Open Access iconOpen Access

ARTICLE

crossmark

Influences of Co-Flow and Counter-Flow Modes of Reactant Flow Arrangement on a PEMFC at Start-Up

Qianqian Shao1, Min Wang2,*, Nuo Xu1

1 School of Petroleum Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
2 Mechanics Division, Beijing Computational Science Research Center, Beijing, 100193, China

* Corresponding Author: Min Wang. Email: email

Computer Modeling in Engineering & Sciences 2024, 139(2), 1337-1356. https://doi.org/10.32604/cmes.2023.044313

Abstract

To investigate the influences of co-flow and counter-flow modes of reactant flow arrangement on a proton exchange membrane fuel cell (PEMFC) during start-up, unsteady physical and mathematical models fully coupling the flow, heat, and electrochemical reactions in a PEMFC are established. The continuity equation and momentum equation are solved by handling pressure-velocity coupling using the SIMPLE algorithm. The electrochemical reaction rates in the catalyst layers (CLs) of the cathode and anode are calculated using the Butler-Volmer equation. The multiphase mixture model describes the multiphase transport process of gas mixtures and liquid water in the fuel cell. After validation, the influences of co-flow and counter-flow modes on the PEMFC performance are investigated, including the evolution of the current density, flow field, temperature field, and reactant concentration field during start-up, as well as the steady distribution of the current density, reactant concentration, and membrane water content when the start-up stabilizes. Co-flow and counter-flow modes influence the current density distribution and temperature distribution. On the one hand, the co-flow mode accelerates the start-up process of the PEMFC and leads to a more evenly distributed current density than the counter-flow mode. On the other hand, the temperature difference between the inlet and outlet sections of the cell is up to 10.1°C under the co-flow mode, much larger than the 5.0°C observed in the counter-flow mode. Accordingly, the counter-flow mode results in a more evenly distributed temperature and a lower maximum temperature than the co-flow case. Therefore, in the flow field design of a PEMFC, the reactant flow arrangements can be considered to weigh between better heat management and higher current density distribution of the cell.

Keywords

PEMFC; full coupling model; Butler-Volmer equation; multiphase mixture model; co-flow mode; counter-flow mode

Cite This Article

APA Style
Shao, Q., Wang, M., Xu, N. (2024). Influences of Co-Flow and Counter-Flow Modes of Reactant Flow Arrangement on a PEMFC at Start-Up. Computer Modeling in Engineering & Sciences, 139(2), 1337–1356. https://doi.org/10.32604/cmes.2023.044313
Vancouver Style
Shao Q, Wang M, Xu N. Influences of Co-Flow and Counter-Flow Modes of Reactant Flow Arrangement on a PEMFC at Start-Up. Comput Model Eng Sci. 2024;139(2):1337–1356. https://doi.org/10.32604/cmes.2023.044313
IEEE Style
Q. Shao, M. Wang, and N. Xu, “Influences of Co-Flow and Counter-Flow Modes of Reactant Flow Arrangement on a PEMFC at Start-Up,” Comput. Model. Eng. Sci., vol. 139, no. 2, pp. 1337–1356, 2024. https://doi.org/10.32604/cmes.2023.044313



cc Copyright © 2024 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1110

    View

  • 413

    Download

  • 0

    Like

Related articles

Share Link