Open Access
ARTICLE
An Improved Elite Slime Mould Algorithm for Engineering Design
1 School of Artificial Intelligence, Beijing Institute of Economics and Management, Beijing, 100102, China
2 College of Computer Science and Technology, Jilin University, Changchun, 130012, China
3 College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China
4 Zhejiang Academy of Science and Technology Information, Hangzhou, 310008, China
* Corresponding Author: Deng Chen. Email:
(This article belongs to the Special Issue: Computational Intelligent Systems for Solving Complex Engineering Problems: Principles and Applications)
Computer Modeling in Engineering & Sciences 2023, 137(1), 415-454. https://doi.org/10.32604/cmes.2023.026098
Received 15 August 2022; Accepted 16 December 2022; Issue published 23 April 2023
Abstract
The Swarm intelligence algorithm is a very prevalent field in which some scholars have made outstanding achievements. As a representative, Slime mould algorithm (SMA) is widely used because of its superior initial performance. Therefore, this paper focuses on the improvement of the SMA and the mitigation of its stagnation problems. For this aim, the structure of SMA is adjusted to develop the efficiency of the original method. As a stochastic optimizer, SMA mainly stimulates the behavior of slime mold in nature. For the harmony of the exploration and exploitation of SMA, the paper proposed an enhanced algorithm of SMA called ECSMA, in which two mechanisms are embedded into the structure: elite strategy, and chaotic stochastic strategy. The details of the original SMA and the two introduced strategies are given in this paper. Then, the advantages of the improved SMA through mechanism comparison, balance-diversity analysis, and contrasts with other counterparts are validated. The experimental results demonstrate that both mechanisms have a significant enhancing effect on SMA. Also, SMA is applied to four structural design issues of the welded beam design problem, PV design problem, I-beam design problem, and cantilever beam design problem with excellent results.Graphic Abstract
Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.