Open Access
REVIEW
Explainable Rules and Heuristics in AI Algorithm Recommendation Approaches—A Systematic Literature Review and Mapping Study
GRIAL Research Group, Computer Science Department, University of Salamanca, Salamanca, 37008, Spain
* Corresponding Author: Francisco José García-Peñalvo. Email:
(This article belongs to the Special Issue: AI and Machine Learning for Secure Mobile Cloud Computing and Web based Applications)
Computer Modeling in Engineering & Sciences 2023, 136(2), 1023-1051. https://doi.org/10.32604/cmes.2023.023897
Received 17 May 2022; Accepted 08 October 2022; Issue published 06 February 2023
Abstract
The exponential use of artificial intelligence (AI) to solve and automated complex tasks has catapulted its popularity generating some challenges that need to be addressed. While AI is a powerful means to discover interesting patterns and obtain predictive models, the use of these algorithms comes with a great responsibility, as an incomplete or unbalanced set of training data or an unproper interpretation of the models’ outcomes could result in misleading conclusions that ultimately could become very dangerous. For these reasons, it is important to rely on expert knowledge when applying these methods. However, not every user can count on this specific expertise; non-AI-expert users could also benefit from applying these powerful algorithms to their domain problems, but they need basic guidelines to obtain the most out of AI models. The goal of this work is to present a systematic review of the literature to analyze studies whose outcomes are explainable rules and heuristics to select suitable AI algorithms given a set of input features. The systematic review follows the methodology proposed by Kitchenham and other authors in the field of software engineering. As a result, 9 papers that tackle AI algorithm recommendation through tangible and traceable rules and heuristics were collected. The reduced number of retrieved papers suggests a lack of reporting explicit rules and heuristics when testing the suitability and performance of AI algorithms.Graphic Abstract
Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.