Open Access
ARTICLE
Exploiting the Direct Link in IRS Assisted NOMA Networks with Hardware Impairments
1 Key Laboratory of Modern Measurement & Control Technology, Ministry of Education, School of Information and Communication Engineering, Beijing Information Science and Technology University, Beijing, 100101, China
2 The Party Committee Office, Yellow River Conservancy Technical Institute, Kaifeng, 475001, China
3 Tangshan University, Tangshan, 063000, China
* Corresponding Author: Xinwei Yue. Email:
(This article belongs to the Special Issue: Recent Advances in Backscatter and Intelligent Reflecting Surface Communications for 6G-enabled Internet of Things Networks)
Computer Modeling in Engineering & Sciences 2023, 136(1), 767-785. https://doi.org/10.32604/cmes.2023.025300
Received 04 July 2022; Accepted 23 August 2022; Issue published 05 January 2023
Abstract
Hardware impairments (HI) are always present in low-cost wireless devices. This paper investigates the outage behaviors of intelligent reflecting surface (IRS) assisted non-orthogonal multiple access (NOMA) networks by taking into account the impact of HI. Specifically, we derive the approximate and asymptotic expressions of the outage probability for the IRS-NOMA-HI networks. Based on the asymptotic results, the diversity orders under perfect self-interference cancellation and imperfect self-interference cancellation scenarios are obtained to evaluate the performance of the considered network. In addition, the system throughput of IRS-NOMA-HI is discussed in delay-limited mode. The obtained results are provided to verify the accuracy of the theoretical analyses and reveal that: 1) The outage performance and system throughput for IRS-NOMA-HI outperforms that of the IRS-assisted orthogonal multiple access-HI (IRS-OMA-HI) networks; 2) The number of IRS elements, the pass loss factors, the Rician factors, and the value of HI are pivotal to enhancing the performance of IRS-NOMA-HI networks; and 3) It is recommended that effective methods of reducing HI should be used to ensure system performance, in addition to self-interference cancellation techniques.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.