Open Access
ARTICLE
Performance Analysis of RIS Assisted NOMA Networks over Rician Fading Channels
1 School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China
2 College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
3 International Joint Innovation Center, Zhejiang University, Haining, 314400, China
4 Zhejiang Provincial Key Laboratory of Information Processing, Communication and Networking (IPCAN), Hangzhou, 310027, China
5 School of Information and Communication Engineering, Beijing Information Science and Technology University, Beijing, 100101, China
6 Zhejiang Laboratory, Hangzhou, 311121, China
* Corresponding Author: Feng Liu. Email:
(This article belongs to the Special Issue: Recent Advances in Backscatter and Intelligent Reflecting Surface Communications for 6G-enabled Internet of Things Networks)
Computer Modeling in Engineering & Sciences 2023, 135(3), 2531-2555. https://doi.org/10.32604/cmes.2023.024940
Received 17 June 2022; Accepted 15 July 2022; Issue published 23 November 2022
Abstract
In this paper, we consider a downlink non-orthogonal multiple access (NOMA) network assisted by two reconfigurable intelligent surfaces (RISs) over Rician fading channels, in which each user communicates with the base station by the virtue of a RIS to enhance the reliability of the received signal. To evaluate the system performance of our proposed RIS-NOMA network, we first derive the exact and asymptotic expressions for the outage probability and ergodic rate of two users. Then, we derive the exact and asymptotic upper bound expressions for the ergodic rate of the nearby user. Based on asymptotic analytical results, the diversity orders for the outage probability and the high signal-to-noise ratio (SNR) slopes for the ergodic rate of the two users are obtained in the high SNR regime. Moreover, we derive the system throughputs of the proposed RIS-NOMA network in delay-limited and delay-tolerant transmission modes. Numerical results confirm our analysis and demonstrate that: 1) The outage probability and ergodic rate of RIS-NOMA networks are superior to that of RIS-assisted orthogonal multiple access (OMA) networks; 2) The RIS-NOMA networks have ability to achieve a larger system throughput compared to RIS-OMA networks; and 3) The system performance of RIS-NOMA networks can be significantly improved as the number of reflecting elements and Rician factor increases.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.