Open Access iconOpen Access

ARTICLE

crossmark

Bounds on Fractional-Based Metric Dimension of Petersen Networks

by Dalal Awadh Alrowaili1, Mohsin Raza2, Muhammad Javaid2,*

1 Mathematics Department, College of Science, Jouf University, P.O. Box: 2014, Sakakah, Saudi Arabia
2 Department of Mathematics, School of Science, University of Management and Technology, Lahore, Pakistan

* Corresponding Author: Muhammad Javaid. Email: email

(This article belongs to the Special Issue: Resolvability Parameters and their Applications)

Computer Modeling in Engineering & Sciences 2023, 135(3), 2697-2713. https://doi.org/10.32604/cmes.2023.023017

Abstract

The problem of investigating the minimum set of landmarks consisting of auto-machines (Robots) in a connected network is studied with the concept of location number or metric dimension of this network. In this paper, we study the latest type of metric dimension called as local fractional metric dimension (LFMD) and find its upper bounds for generalized Petersen networks GP(n, 3), where n ≥ 7. For n ≥ 9. The limiting values of LFMD for GP(n, 3) are also obtained as 1 (bounded) if n approaches to infinity.

Keywords


Cite This Article

APA Style
Alrowaili, D.A., Raza, M., Javaid, M. (2023). Bounds on fractional-based metric dimension of petersen networks. Computer Modeling in Engineering & Sciences, 135(3), 2697-2713. https://doi.org/10.32604/cmes.2023.023017
Vancouver Style
Alrowaili DA, Raza M, Javaid M. Bounds on fractional-based metric dimension of petersen networks. Comput Model Eng Sci. 2023;135(3):2697-2713 https://doi.org/10.32604/cmes.2023.023017
IEEE Style
D. A. Alrowaili, M. Raza, and M. Javaid, “Bounds on Fractional-Based Metric Dimension of Petersen Networks,” Comput. Model. Eng. Sci., vol. 135, no. 3, pp. 2697-2713, 2023. https://doi.org/10.32604/cmes.2023.023017



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1029

    View

  • 613

    Download

  • 0

    Like

Share Link