Open Access iconOpen Access

ARTICLE

Novel Apodized Fiber Bragg Grating Applied for Medical Sensors: Performance Investigation

by Ramya Arumugam1, Ramamoorthy Kumar1,*, Samiappan Dhanalakshmi1, Khin Wee Lai2, Lei Jiao3,*, Xiang Wu4

1 Department of Electronics and Communication Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, India
2 Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
3 General Hospital of Xuzhou Mining Group, Xuzhou, 221000, China
4 School of Medical Information & Engineering, Xuzhou Medical University, Xuzhou, 221000, China

* Corresponding Authors: Ramamoorthy Kumar. Email: email; Lei Jiao. Email: email

(This article belongs to the Special Issue: Enabled and Human-centric Computational Intelligence Solutions for Visual Understanding and Application)

Computer Modeling in Engineering & Sciences 2023, 135(1), 301-323. https://doi.org/10.32604/cmes.2022.022144

Abstract

Sensors play an important role in shaping and monitoring human health. Exploration of methods to use Fiber Bragg Grating (FBG) with enhanced sensitivity has attracted great interest in the field of medical research. In this paper, a novel apodization function is proposed and performance evaluation and optimization of the same have been made. A comparison was conducted between various existing apodization functions and the proposed one based on optical characteristics and sensor parameters. The results evince the implementation of the proposed apodization function for vital sign measurement. The optical characteristics considered for evaluation are Peak Resonance Reflectivity level, Side Lobes Reflectivity level and Full Width Half Maximum (FWHM). The proposed novel apodization novel function has better FWHM, which is narrower than the FWHM of uniform FBG. Sensor characteristics like a quality parameter, detection accuracy and sensitivity also show improvement. The proposed novel apodization function is demonstrated to have a better shift in wavelength in terms of temperature and pulse measurement than the existing functions. The sensitivity of the proposed apodized function is enhanced with a Poly-dimethylsiloxane coating of varying thickness, which is 6 times and 5.14 times greater than uniform Fiber Bragg grating and FBG with the proposed novel apodization function, respectively, enhancing its utilization in the field of medicine.

Graphic Abstract

Novel Apodized Fiber Bragg Grating Applied for Medical Sensors: Performance Investigation

Keywords


Cite This Article

APA Style
Arumugam, R., Kumar, R., Dhanalakshmi, S., Lai, K.W., Jiao, L. et al. (2023). Novel apodized fiber bragg grating applied for medical sensors: performance investigation. Computer Modeling in Engineering & Sciences, 135(1), 301-323. https://doi.org/10.32604/cmes.2022.022144
Vancouver Style
Arumugam R, Kumar R, Dhanalakshmi S, Lai KW, Jiao L, Wu X. Novel apodized fiber bragg grating applied for medical sensors: performance investigation. Comput Model Eng Sci. 2023;135(1):301-323 https://doi.org/10.32604/cmes.2022.022144
IEEE Style
R. Arumugam, R. Kumar, S. Dhanalakshmi, K. W. Lai, L. Jiao, and X. Wu, “Novel Apodized Fiber Bragg Grating Applied for Medical Sensors: Performance Investigation,” Comput. Model. Eng. Sci., vol. 135, no. 1, pp. 301-323, 2023. https://doi.org/10.32604/cmes.2022.022144



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1528

    View

  • 769

    Download

  • 0

    Like

Share Link