Open Access iconOpen Access

ARTICLE

crossmark

Prototypical Network Based on Manhattan Distance

Zengchen Yu1, Ke Wang2,*, Shuxuan Xie1, Yuanfeng Zhong1, Zhihan Lv3

1 College of Computer Science and Technology, Qingdao University, Qingdao, China
2 Psychiatric Department, Qingdao Municipal Hospital, Qingdao, China
3 Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China

* Corresponding Author: Ke Wang. Email: email

Computer Modeling in Engineering & Sciences 2022, 131(2), 655-675. https://doi.org/10.32604/cmes.2022.019612

Abstract

Few-shot Learning algorithms can be effectively applied to fields where certain categories have only a small amount of data or a small amount of labeled data, such as medical images, terrorist surveillance, and so on. The Metric Learning in the Few-shot Learning algorithm is classified by measuring the similarity between the classified samples and the unclassified samples. This paper improves the Prototypical Network in the Metric Learning, and changes its core metric function to Manhattan distance. The Convolutional Neural Network of the embedded module is changed, and mechanisms such as average pooling and Dropout are added. Through comparative experiments, it is found that this model can converge in a small number of iterations (below 15,000 episodes), and its performance exceeds algorithms such as MAML. Research shows that replacing Manhattan distance with Euclidean distance can effectively improve the classification effect of the Prototypical Network, and mechanisms such as average pooling and Dropout can also effectively improve the model.

Keywords


Cite This Article

APA Style
Yu, Z., Wang, K., Xie, S., Zhong, Y., Lv, Z. (2022). Prototypical network based on manhattan distance. Computer Modeling in Engineering & Sciences, 131(2), 655-675. https://doi.org/10.32604/cmes.2022.019612
Vancouver Style
Yu Z, Wang K, Xie S, Zhong Y, Lv Z. Prototypical network based on manhattan distance. Comput Model Eng Sci. 2022;131(2):655-675 https://doi.org/10.32604/cmes.2022.019612
IEEE Style
Z. Yu, K. Wang, S. Xie, Y. Zhong, and Z. Lv, “Prototypical Network Based on Manhattan Distance,” Comput. Model. Eng. Sci., vol. 131, no. 2, pp. 655-675, 2022. https://doi.org/10.32604/cmes.2022.019612



cc Copyright © 2022 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2461

    View

  • 1346

    Download

  • 0

    Like

Share Link