Open Access
ARTICLE
A Fast Approach for Predicting Aerodynamic Noise Sources of High-Speed Train Running in Tunnel
1 State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, 610031, China
2 School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, China
3 China Railway Eryuan Engineering Group Co., Ltd., Chengdu, 610031, China
* Corresponding Author: Tian Li. Email:
Computer Modeling in Engineering & Sciences 2022, 130(3), 1371-1386. https://doi.org/10.32604/cmes.2022.018480
Received 28 July 2021; Accepted 14 October 2021; Issue published 30 December 2021
Abstract
The aerodynamic noise of high-speed trains passing through a tunnel has gradually become an important issue. Numerical approaches for predicting the aerodynamic noise sources of high-speed trains running in tunnels are the key to alleviating aerodynamic noise issues. In this paper, two typical numerical methods are used to calculate the aerodynamic noise of high-speed trains. These are the static method combined with non-reflective boundary conditions and the dynamic mesh method combined with adaptive mesh. The fluctuating pressure, flow field and aerodynamic noise source are numerically simulated using the above methods. The results show that the fluctuating pressure, flow field structure and noise source characteristics obtained using different methods, are basically consistent. Compared to the dynamic mesh method, the pressure, vortex size and noise source radiation intensity, obtained by the static method, are larger. The differences are in the tail car and its wake. The two calculation methods show that the spectral characteristics of the surface noise source are consistent. The maximum difference in the sound pressure level is 1.9 dBA. The static method is more efficient and more suitable for engineering applications.Keywords
Cite This Article
Citations
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.