Home / Journals / CMES / Vol.130, No.3, 2022
Special Issues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    Parameter Estimation Based on Censored Data under Partially Accelerated Life Testing for Hybrid Systems due to Unknown Failure Causes

    Mustafa Kamal*
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1239-1269, 2022, DOI:10.32604/cmes.2022.017532 - 30 December 2021
    Abstract In general, simple subsystems like series or parallel are integrated to produce a complex hybrid system. The reliability of a system is determined by the reliability of its constituent components. It is often extremely difficult or impossible to get specific information about the component that caused the system to fail. Unknown failure causes are instances in which the actual cause of system failure is unknown. On the other side, thanks to current advanced technology based on computers, automation, and simulation, products have become incredibly dependable and trustworthy, and as a result, obtaining failure data for… More >

  • Open AccessOpen Access

    REVIEW

    Deep Learning-Based Cancer Detection-Recent Developments, Trend and Challenges

    Gulshan Kumar1,*, Hamed Alqahtani2
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1271-1307, 2022, DOI:10.32604/cmes.2022.018418 - 30 December 2021
    Abstract Cancer is one of the most critical diseases that has caused several deaths in today’s world. In most cases, doctors and practitioners are only able to diagnose cancer in its later stages. In the later stages, planning cancer treatment and increasing the patient’s survival rate becomes a very challenging task. Therefore, it becomes the need of the hour to detect cancer in the early stages for appropriate treatment and surgery planning. Analysis and interpretation of medical images such as MRI and CT scans help doctors and practitioners diagnose many diseases, including cancer disease. However, manual… More >

  • Open AccessOpen Access

    ARTICLE

    Reversible Watermarking Method with Low Distortion for the Secure Transmission of Medical Images

    Rizwan Taj1, Feng Tao1,*, Shahzada Khurram2, Ateeq Ur Rehman3, Syed Kamran Haider4, Akber Abid Gardezi5, Saima Kanwal1
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1309-1324, 2022, DOI:10.32604/cmes.2022.017650 - 30 December 2021
    Abstract In telemedicine, the realization of reversible watermarking through information security is an emerging research field. However, adding watermarks hinders the distribution of pixels in the cover image because it creates distortions (which lead to an increase in the detection probability). In this article, we introduce a reversible watermarking method that can transmit medical images with minimal distortion and high security. The proposed method selects two adjacent gray pixels whose least significant bit (LSB) is different from the relevant message bit and then calculates the distortion degree. We use the LSB pairing method to embed the secret… More >

  • Open AccessOpen Access

    ARTICLE

    Discussion of the Fluid Acceleration Quality of a Ducted Propulsion System on the Propulsive Performance

    Jui-Hsiang Kao*, Yi-Fan Liao
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1325-1348, 2022, DOI:10.32604/cmes.2022.016212 - 30 December 2021
    Abstract This paper focuses on the ducted propulsion with the accelerating nozzle, and discusses the influence of its fluid acceleration quality on its propulsive performances, including the hull efficiency, the relative rotative efficiency, the effective wake, and the thrust deduction factor. An actual ducted propulsion system is used as an example for computational analysis. The computational conditions are divided into four combinations, which are provided with different propeller pitches, cambers, and duct lengths. The method applied in this study is the Computational Fluid Dynamics (CFD) technology, and the contents of the calculation include the hull's viscous… More >

  • Open AccessOpen Access

    ARTICLE

    The Method of Fundamental Solutions for Two-Dimensional Elastostatic Problems with Stress Concentration and Highly Anisotropic Materials

    M. R. Hematiyan1,*, B. Jamshidi1, M. Mohammadi2
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1349-1369, 2022, DOI:10.32604/cmes.2022.018235 - 30 December 2021
    Abstract The method of fundamental solutions (MFS) is a boundary-type and truly meshfree method, which is recognized as an efficient numerical tool for solving boundary value problems. The geometrical shape, boundary conditions, and applied loads can be easily modeled in the MFS. This capability makes the MFS particularly suitable for shape optimization, moving load, and inverse problems. However, it is observed that the standard MFS lead to inaccurate solutions for some elastostatic problems with stress concentration and/or highly anisotropic materials. In this work, by a numerical study, the important parameters, which have significant influence on the… More >

  • Open AccessOpen Access

    ARTICLE

    A Fast Approach for Predicting Aerodynamic Noise Sources of High-Speed Train Running in Tunnel

    Deng Qin1, Tian Li1,*, Honglin Wang2, Jizhong Yang3, Yao Jiang3, Jiye Zhang1, Haiquan Bi2
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1371-1386, 2022, DOI:10.32604/cmes.2022.018480 - 30 December 2021
    Abstract The aerodynamic noise of high-speed trains passing through a tunnel has gradually become an important issue. Numerical approaches for predicting the aerodynamic noise sources of high-speed trains running in tunnels are the key to alleviating aerodynamic noise issues. In this paper, two typical numerical methods are used to calculate the aerodynamic noise of high-speed trains. These are the static method combined with non-reflective boundary conditions and the dynamic mesh method combined with adaptive mesh. The fluctuating pressure, flow field and aerodynamic noise source are numerically simulated using the above methods. The results show that the More >

  • Open AccessOpen Access

    ARTICLE

    An Analysis of Integrating Machine Learning in Healthcare for Ensuring Confidentiality of the Electronic Records

    Adil Hussain Seh1, Jehad F. Al-Amri2, Ahmad F. Subahi3, Alka Agrawal1, Nitish Pathak4, Rajeev Kumar5,6,*, Raees Ahmad Khan1
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1387-1422, 2022, DOI:10.32604/cmes.2022.018163 - 30 December 2021
    Abstract The adoption of sustainable electronic healthcare infrastructure has revolutionized healthcare services and ensured that E-health technology caters efficiently and promptly to the needs of the stakeholders associated with healthcare. Despite the phenomenal advancement in the present healthcare services, the major obstacle that mars the success of E-health is the issue of ensuring the confidentiality and privacy of the patients’ data. A thorough scan of several research studies reveals that healthcare data continues to be the most sought after entity by cyber invaders. Various approaches and methods have been practiced by researchers to secure healthcare digital… More >

  • Open AccessOpen Access

    ARTICLE

    Deep Learning-Based Algorithm for Multi-Type Defects Detection in Solar Cells with Aerial EL Images for Photovoltaic Plants

    Wuqin Tang, Qiang Yang, Wenjun Yan*
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1423-1439, 2022, DOI:10.32604/cmes.2022.018313 - 30 December 2021
    Abstract Defects detection with Electroluminescence (EL) image for photovoltaic (PV) module has become a standard test procedure during the process of production, installation, and operation of solar modules. There are some typical defects types, such as crack, finger interruption, that can be recognized with high accuracy. However, due to the complexity of EL images and the limitation of the dataset, it is hard to label all types of defects during the inspection process. The unknown or unlabeled create significant difficulties in the practical application of the automatic defects detection technique. To address the problem, we proposed… More >

  • Open AccessOpen Access

    ARTICLE

    Stroke Based Painterly Rendering with Mass Data through Auto Warping Generation

    Taemin Lee1, Beomsik Kim2, Sanghyun Seo3, Kyunghyun Yoon4,*
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1441-1457, 2022, DOI:10.32604/cmes.2022.018010 - 30 December 2021
    (This article belongs to the Special Issue: HPC with Artificial Intelligence based Deep Video Data Analytics: Models, Applications and Approaches)
    Abstract Painting is done according to the artist's style. The most representative of the style is the texture and shape of the brush stroke. Computer simulations allow the artist's painting to be produced by taking this stroke and pasting it onto the image. This is called stroke-based rendering. The quality of the result depends on the number or quality of this stroke, since the stroke is taken to create the image. It is not easy to render using a large amount of information, as there is a limit to having a stroke scanned. In this work, More >

  • Open AccessOpen Access

    ARTICLE

    A Novel Indoor Positioning Framework

    Ming-Chih Chen, Yin-Ting Cheng*, Ru-Wei Chen
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1459-1477, 2022, DOI:10.32604/cmes.2022.015636 - 30 December 2021
    (This article belongs to the Special Issue: Hybrid Intelligent Methods for Forecasting in Resources and Energy Field)
    Abstract Current positioning systems are primarily based on the Global Positioning System (GPS). Although the GPS is accurate within 10 m, it is mainly used for outdoor positioning services (Location-Based Service; LBS). However, since satellite signals cannot penetrate buildings, indoor positioning has always been a blind spot for satellite signals. As indoor positioning applications are extensive with high commercial values, they have created a competitive niche in the market. Existing indoor positioning technologies are unable to achieve less than 10 cm accuracy except for the Ultra Wide Band (UWB) technology. On the other hand, the Bluetooth More >

  • Open AccessOpen Access

    ARTICLE

    Note on a New Construction of Kantorovich Form q-Bernstein Operators Related to Shape Parameter λ

    Qingbo Cai1, Reşat Aslan2,*
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1479-1493, 2022, DOI:10.32604/cmes.2022.018338 - 30 December 2021
    (This article belongs to the Special Issue: Trend Topics in Special Functions and Polynomials: Theory, Methods, Applications and Modeling)
    Abstract The main purpose of this paper is to introduce some approximation properties of a Kantorovich kind q-Bernstein operators related to Bézier basis functions with shape parameter . Firstly, we compute some basic results such as moments and central moments, and derive the Korovkin type approximation theorem for these operators. Next, we estimate the order of convergence in terms of the usual modulus of continuity, for the functions belong to Lipschitz-type class and Peetre’s K-functional, respectively. Lastly, with the aid of Maple software, we present the comparison of the convergence of these newly defined operators to the More >

  • Open AccessOpen Access

    ARTICLE

    Strengthened Initialization of Adaptive Cross-Generation Differential Evolution

    Wei Wan1, Gaige Wang1,2,3,*, Junyu Dong1
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1495-1516, 2022, DOI:10.32604/cmes.2021.017987 - 30 December 2021
    (This article belongs to the Special Issue: Swarm Intelligence and Applications in Combinatorial Optimization)
    Abstract Adaptive Cross-Generation Differential Evolution (ACGDE) is a recently-introduced algorithm for solving multiobjective problems with remarkable performance compared to other evolutionary algorithms (EAs). However, its convergence and diversity are not satisfactory compared with the latest algorithms. In order to adapt to the current environment, ACGDE requires improvements in many aspects, such as its initialization and mutant operator. In this paper, an enhanced version is proposed, namely SIACGDE. It incorporates a strengthened initialization strategy and optimized parameters in contrast to its predecessor. These improvements make the direction of crossgeneration mutation more clearly and the ability of searching More >

  • Open AccessOpen Access

    ARTICLE

    Wavelet Decomposition Impacts on Traditional Forecasting Time Series Models

    W. A. Shaikh1,2,*, S. F. Shah2, S. M. Pandhiani3, M. A. Solangi2
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1517-1532, 2022, DOI:10.32604/cmes.2022.017822 - 30 December 2021
    (This article belongs to the Special Issue: New Trends in Statistical Computing and Data Science)
    Abstract This investigative study is focused on the impact of wavelet on traditional forecasting time-series models, which significantly shows the usage of wavelet algorithms. Wavelet Decomposition (WD) algorithm has been combined with various traditional forecasting time-series models, such as Least Square Support Vector Machine (LSSVM), Artificial Neural Network (ANN) and Multivariate Adaptive Regression Splines (MARS) and their effects are examined in terms of the statistical estimations. The WD has been used as a mathematical application in traditional forecast modelling to collect periodically measured parameters, which has yielded tremendous constructive outcomes. Further, it is observed that the More >

  • Open AccessOpen Access

    ARTICLE

    Deep Neural Network with Strip Pooling for Image Classification of Yarn-Dyed Plaid Fabrics

    Xiaoting Zhang1, Weidong Gao2,*, Ruru Pan2
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1533-1546, 2022, DOI:10.32604/cmes.2022.018763 - 30 December 2021
    (This article belongs to the Special Issue: Computer Modeling for Smart Cities Applications)
    Abstract Historically, yarn-dyed plaid fabrics (YDPFs) have enjoyed enduring popularity with many rich plaid patterns, but production data are still classified and searched only according to production parameters. The process does not satisfy the visual needs of sample order production, fabric design, and stock management. This study produced an image dataset for YDPFs, collected from 10,661 fabric samples. The authors believe that the dataset will have significant utility in further research into YDPFs. Convolutional neural networks, such as VGG, ResNet, and DenseNet, with different hyperparameter groups, seemed the most promising tools for the study. This paper… More >

  • Open AccessOpen Access

    ARTICLE

    Identification of Denatured Biological Tissues Based on Improved Variational Mode Decomposition and Autoregressive Model during HIFU Treatment

    Bei Liu1, Xian Zhang2,*
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1547-1563, 2022, DOI:10.32604/cmes.2022.018130 - 30 December 2021
    (This article belongs to the Special Issue: Computer Methods in Bio-mechanics and Biomedical Engineering)
    Abstract During high-intensity focused ultrasound (HIFU) treatment, the accurate identification of denatured biological tissue is an important practical problem. In this paper, a novel method based on the improved variational mode decomposition (IVMD) and autoregressive (AR) model was proposed, which identified denatured biological tissue according to the characteristics of ultrasonic scattered echo signals during HIFU treatment. Firstly, the IVMD method was proposed to solve the problem that the VMD reconstruction signal still has noise due to the limited number of intrinsic mode functions (IMF). The ultrasonic scattered echo signals were reconstructed by the IVMD to achieve… More >

  • Open AccessOpen Access

    ARTICLE

    A New Attempt to Neutrosophic Soft Bi-Topological Spaces

    Arif Mehmood1, Muhammad Aslam2, Muhammad Imran Khan3, Humera Qureshi3, Choonkil Park4,*, Jung Rye Lee5
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1565-1585, 2022, DOI:10.32604/cmes.2022.018518 - 30 December 2021
    (This article belongs to the Special Issue: Advances in Neutrosophic and Plithogenic Sets for Engineering and Sciences: Theory, Models, and Applications (ANPSESTMA))
    Abstract In this article, new generalized neutrosophic soft * b open set is introduced in neutrosophic soft bi-topological structurers (NSBTS) concerning soft points of the space. This new set is produced by making the marriage of soft semi-open set with soft pre-open set in neutrosophic soft topological structure. An ample of results are investigated in NSBTS on the basis of this new neutrosophic soft * b open set. Proper examples are settled for justification of these results. The non-validity of some results is vindicated with examples. More >

  • Open AccessOpen Access

    ARTICLE

    Dombi-Normalized Weighted Bonferroni Mean Operators with Novel Multiple-Valued Complex Neutrosophic Uncertain Linguistic Sets and Their Application in Decision Making

    Tahir Mahmood1, Zeeshan Ali1, Dulyawit Prangchumpol2,*, Thammarat Panityakul3
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1587-1623, 2022, DOI:10.32604/cmes.2022.017998 - 30 December 2021
    (This article belongs to the Special Issue: Advances in Neutrosophic and Plithogenic Sets for Engineering and Sciences: Theory, Models, and Applications (ANPSESTMA))
    Abstract Although fuzzy set concepts have evolved, neutrosophic sets are attracting more attention due to the greater power of the structure of neutrosophic sets. The ability to account for components that are true, false or neither true nor false is useful in the resolution of real-life problems. However, simultaneous variations render neutrosophic sets unsuitable in specific circumstances. To enable the management of these sorts of issues, we combine the principle of multi-valued neutrosophic uncertain linguistic sets and complex fuzzy sets to develop the principle of multi-valued complex neutrosophic uncertain linguistic sets. Multi-valued complex neutrosophic uncertain linguistic… More >

  • Open AccessOpen Access

    ARTICLE

    On Single Valued Neutrosophic Regularity Spaces

    Yaser Saber1,2, Fahad Alsharari1,6,*, Florentin Smarandache3, Mohammed Abdel-Sattar4,5
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1625-1648, 2022, DOI:10.32604/cmes.2022.017782 - 30 December 2021
    (This article belongs to the Special Issue: Advances in Neutrosophic and Plithogenic Sets for Engineering and Sciences: Theory, Models, and Applications (ANPSESTMA))
    Abstract This article aims to present new terms of single-valued neutrosophic notions in the Šostak sense, known as single-valued neutrosophic regularity spaces. Concepts such as r-single-valued neutrosophic semi £-open, r-single-valued neutrosophic pre-£-open, r-single valued neutrosophic regular-£-open and r-single valued neutrosophic α£-open are defined and their properties are studied as well as the relationship between them. Moreover, we introduce the concept of r-single valued neutrosophic θ£-cluster point and r-single-valued neutrosophic γ £-cluster point, r-θ£-closed, and θ£-closure operators and study some of their properties. Also, we present and investigate the notions of r-single-valued neutrosophic θ£-connectedness and r-single valued neutrosophic δ£-connectedness and investigate relationship More >

  • Open AccessOpen Access

    ARTICLE

    A Fluid-Structure Interaction Simulation of Coal and Gas Outbursts Based on the Interaction between the Gas Pressure and Deformation of a Coal-Rock Mass

    Lin Fang1,2,*, Mengjun Wu1,2, Bin Wu3, Honglin Li4, Chenhao He5,*, Fan Sun5
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1649-1668, 2022, DOI:10.32604/cmes.2022.018527 - 30 December 2021
    (This article belongs to the Special Issue: Computer Modelling in Disaster Prevention and Mitigation for Engineering Structures)
    Abstract Based on the theories of the gas seepage in coal seams and the deformation of the coal-rock medium, the gas seepage field in coal-rock mass is coupled with the deformation field of the coal-rock mass to establish a fluid-structure interaction model for the interaction between coal gas and coal-rock masses. The outburst process in coal-rock masses under the joint action of gas pressure and crustal stress is simulated using the material point method. The simulation results show the changes in gas pressure, velocity distribution, maximum principal stress distribution, and damage distribution during the process of… More >

  • Open AccessOpen Access

    ARTICLE

    Dynamic Performance of Straddle Monorail Curved Girder Bridge

    Yan Zhou1,*, Kai Zhang2, Feng Miao3, Pengfei Yang1
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1669-1682, 2022, DOI:10.32604/cmes.2022.018101 - 30 December 2021
    (This article belongs to the Special Issue: Computer Modelling in Disaster Prevention and Mitigation for Engineering Structures)
    Abstract In this work, a monorail vehicle-bridge coupling (VBC) model capable of accurately considering curve alignment and superelevation is established based on curvilinear moving coordinate system, to study the VBC vibration of straddle monorail curved girder bridge and the relevant factors influencing VBC. While taking Chongqing Jiao Xin line as an example, the VBC program is compiled using Fortran, where the reliability of algorithm and program is verified by the results of Chongqing monorail test. Moreover, the effects of curve radius, vehicle speed, and track irregularity on the corresponding vehicle and bridge vibrations are compared and… More >

  • Open AccessOpen Access

    ARTICLE

    A Discrete Numerical Study of the Effect of the Thickness and the Porosity of the Sand Cushion on the Impact Response Due to the Rockfall

    Song Yuan1, Peng Zhao2,*, Liangpu Li1,*, Xibao Wang1, Jun Liu3, Bo Zhang4
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1683-1698, 2022, DOI:10.32604/cmes.2022.018507 - 30 December 2021
    (This article belongs to the Special Issue: Computer Modelling in Disaster Prevention and Mitigation for Engineering Structures)
    Abstract The prevention and the reduction of the rockfall are the common measures of the prevention and the reduction of disasters. When the rock-shed resists the impact of the rockfall, the force that acts on the structure consists of the cushion dead load and the impact-induced load, of which the dynamic process of the propagation of the impact-induced load is complex. Therefore, we conducted a numerical study to investigate the impact of the rockfall. Considering the highly discrete characteristic of the sand, we developed a numerical model on the basis of the discrete element method (DEM).… More >

  • Open AccessOpen Access

    ARTICLE

    Image Reconstruction for ECT under Compressed Sensing Framework Based on an Overcomplete Dictionary

    Xuebin Qin1,*, Yutong Shen1, Jiachen Hu1, Mingqiao Li1, Peijiao Yang1, Chenchen Ji1, Xinlong Zhu2
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1699-1717, 2022, DOI:10.32604/cmes.2022.018234 - 30 December 2021
    (This article belongs to the Special Issue: Mechanical Reliability of Advanced Materials and Structures for Harsh Applications)
    Abstract Electrical capacitance tomography (ECT) has great application potential in multiphase process monitoring, and its visualization results are of great significance for studying the changes in two-phase flow in closed environments. In this paper, compressed sensing (CS) theory based on dictionary learning is introduced to the inverse problem of ECT, and the K-SVD algorithm is used to learn the overcomplete dictionary to establish a nonlinear mapping between observed capacitance and sparse space. Because the trained overcomplete dictionary has the property to match few features of interest in the reconstructed image of ECT, it is not necessary More >

  • Open AccessOpen Access

    ARTICLE

    A Novel Method for the Reconstruction of Road Profiles from Measured Vehicle Responses Based on the Kalman Filter Method

    Jianghui Zhu1,3, Xiaotong Chang2, Xueli Zhang2, Yutai Su2, Xu Long2,*
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1719-1735, 2022, DOI:10.32604/cmes.2022.019140 - 30 December 2021
    (This article belongs to the Special Issue: Mechanical Reliability of Advanced Materials and Structures for Harsh Applications)
    Abstract The estimation of the disturbance input acting on a vehicle from its given responses is an inverse problem. To overcome some of the issues related to ill-posed inverse problems, this work proposes a method of reconstructing the road roughness based on the Kalman filter method. A half-car model that considers both the vehicle and equipment is established, and the joint input-state estimation method is used to identify the road profile. The capabilities of this methodology in the presence of noise are numerically demonstrated. Moreover, to reduce the influence of the driving speed on the estimation More >

  • Open AccessOpen Access

    ARTICLE

    Complex Network Formation and Analysis of Online Social Media Systems

    Hafiz Abid Mahmood Malik*
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1737-1750, 2022, DOI:10.32604/cmes.2022.018015 - 30 December 2021
    (This article belongs to the Special Issue: Application of Computer Modeling and Simulation in Social Complex System)
    Abstract To discover and identify the influential nodes in any complex network has been an important issue. It is a significant factor in order to control over the network. Through control on a network, any information can be spread and stopped in a short span of time. Both targets can be achieved, since network of information can be extended and as well destroyed. So, information spread and community formation have become one of the most crucial issues in the world of SNA (Social Network Analysis). In this work, the complex network of twitter social network has… More >

  • Open AccessOpen Access

    ARTICLE

    Group Decision-Making Model of Renal Cancer Surgery Options Using Entropy Fuzzy Element Aczel-Alsina Weighted Aggregation Operators under the Environment of Fuzzy Multi-Sets

    Jing Fu1,2, Jun Ye3, Liping Xie1,*
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1751-1769, 2022, DOI:10.32604/cmes.2022.018739 - 30 December 2021
    (This article belongs to the Special Issue: Extension, Modeling and Applications of Fuzzy Set Theory in Engineering and Science)
    Abstract Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’ clinical experience and judgments, the surgical treatment options of renal cancer patients lack their scientifical and reasonable information expression and group decision-making model for renal cancer patients. Fuzzy multi-sets (FMSs) have a number of properties, which make them suitable for expressing the uncertain information of medical diagnoses and treatments in group decision-making (GDM) problems. To choose the most appropriate surgical treatment scheme for a patient with localized renal cell carcinoma (RCC) (T1 stage kidney tumor), this article needs to… More >

  • Open AccessOpen Access

    ARTICLE

    Flow and Melting Thermal Transfer Enhancement Analysis of Alumina, Titanium Oxide-Based Maxwell Nanofluid Flow Inside Double Rotating Disks with Finite-Element Simulation

    Liangliang Chen1, Madeeha Tahir2,*, Sumeira Yasmin3, Taseer Muhammad4, Muhammad Imran5,*, Fenghua Liu1
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1771-1788, 2022, DOI:10.32604/cmes.2022.017539 - 30 December 2021
    (This article belongs to the Special Issue: Recent Trends in Nanofluids: Modelling and Simulations)
    Abstract The energy produced by the melting stretching disks surface has a wide range of commercial applications, including semi-conductor material preparation, magma solidification, permafrost melting, and frozen land refreezing, among others. In view of this, in the current communication we analyzed magnetohydrodynamic flow of Maxwell nanofluid between two parallel rotating disks. Nanofluids are important due to their astonishing properties in heat conduction flows and in the enhancement of electronic and manufacturing devices. Furthermore, the distinct tiny-sized particles and in the Maxwell water-based fluid for enhancing the heat transfer rate are analyzed. The heat equation is developed… More >

  • Open AccessOpen Access

    ARTICLE

    A Novel Bidirectional Interaction Model and Electric Energy Measuring Scheme of EVs for V2G with Distorted Power Loads

    Jiarui Cui1,2,*, Qing Li1,*, Bin Cao2,3, Xiangquan Li1, Qun Yan1
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1789-1806, 2022, DOI:10.32604/cmes.2022.017958 - 30 December 2021
    (This article belongs to the Special Issue: Advances on Modeling and State Estimation for Industrial Processes)
    Abstract With the increasing demand for petroleum resources and environmental issues, new energy electric vehicles are increasingly being used. However, the large number of electric vehicles connected to the grid has brought new challenges to the operation of the grid. Firstly, A novel bidirectional interaction model is established based on modulation theory with nonlinear loads. Then, the electric energy measuring scheme of EVs for V2G is derived under the conditions of distorted power loads. The scheme is composed of fundamental electric energy, fundamental-distorted electric energy, distorted-fundamental electric energy and distorted electric energy. And the characteristics of More >

  • Open AccessOpen Access

    ARTICLE

    Pattern-Moving-Based Parameter Identification of Output Error Models with Multi-Threshold Quantized Observations

    Xiangquan Li1,2, Zhengguang Xu1,*, Cheng Han1, Ning Li1
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1807-1825, 2022, DOI:10.32604/cmes.2022.017799 - 30 December 2021
    (This article belongs to the Special Issue: Advances on Modeling and State Estimation for Industrial Processes)
    Abstract This paper addresses a modified auxiliary model stochastic gradient recursive parameter identification algorithm (M-AM-SGRPIA) for a class of single input single output (SISO) linear output error models with multi-threshold quantized observations. It proves the convergence of the designed algorithm. A pattern-moving-based system dynamics description method with hybrid metrics is proposed for a kind of practical single input multiple output (SIMO) or SISO nonlinear systems, and a SISO linear output error model with multi-threshold quantized observations is adopted to approximate the unknown system. The system input design is accomplished using the measurement technology of random repeatability More >

  • Open AccessOpen Access

    ARTICLE

    Action Recognition Based on CSI Signal Using Improved Deep Residual Network Model

    Jian Zhao1, Shangwu Chong1, Liang Huang1, Xin Li1, Chen He1, Jian Jia2,*
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1827-1851, 2022, DOI:10.32604/cmes.2022.017654 - 30 December 2021
    (This article belongs to the Special Issue: Modeling and Analysis of Autonomous Intelligence)
    Abstract In this paper, we propose an improved deep residual network model to recognize human actions. Action data is composed of channel state information signals, which are continuous fine-grained signals. We replaced the traditional identity connection with the shrinking threshold module. The module automatically adjusts the threshold of the action data signal, and filters out signals that are not related to the principal components. We use the attention mechanism to improve the memory of the network model to the action signal, so as to better recognize the action. To verify the validity of the experiment more More >

  • Open AccessOpen Access

    ARTICLE

    Localization of Mobile Robot Aided for Large-Scale Construction Based on Optimized Artificial Landmark Map in Ongoing Scene

    Zhen Xu1, Shuai Guo1,2,*, Tao Song1, Yuwen Li1, Lingdong Zeng1
    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1853-1882, 2022, DOI:10.32604/cmes.2022.018004 - 30 December 2021
    (This article belongs to the Special Issue: Modeling and Analysis of Autonomous Intelligence)
    Abstract The effectiveness of mobile robot aided for architectural construction depends strongly on its accurate localization ability. Localization of mobile robot is increasingly important for the printing of buildings in the construction scene. Although many available studies on the localization have been conducted, only a few studies have addressed the more challenging problem of localization for mobile robot in large-scale ongoing and featureless scenes. To realize the accurate localization of mobile robot in designated stations, we build an artificial landmark map and propose a novel nonlinear optimization algorithm based on graphs to reduce the uncertainty of More >

Per Page:

Share Link