Computer Modeling in Engineering & Sciences |
DOI: 10.32604/cmes.2022.016924
ARTICLE
Some Formulas Involving Hypergeometric Functions in Four Variables
1Université de Sousse, Institut Supérieur D’Informatique et, Des Techniques de Communication, H. Sousse, 4000, Tunisia
2Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
3China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
4Department of Mathematics, V. B. S. Purvanchal University, Jaunpur, 222003, India
5Department of Mathematics, Aden University, Khormaksar, P.o. Box 6014, Yemen
6Department of Data Science, Daejin University, Kyunggi, 11159, Korea
*Corresponding Author: Jung Rye Lee. Email: jrlee@daejin.ac.kr
Received: 10 April 2021; Accepted: 16 August 2021
Abstract: Several (generalized) hypergeometric functions and a variety of their extensions have been presented and investigated in the literature by many authors. In the present paper, we investigate four new hypergeometric functions in four variables and then establish several recursion formulas for these new functions. Also, some interesting particular cases and consequences of our results are discussed.
Keywords: Recursion formula; quadruple hypergeometric functions; pascal; identity
AMS Subject Classification: 15A15; 33C65
In recent years, many researchers introduced and studied several extensions and generalizations of various special functions due to its applications in diverse areas of mathematical, physical, engineering, etc. Agarwal et al. [1,2] established some properties for generalized Gauss hypergeometric functions, which were introduced by Özergin et al. Later, Agarwal et al. [3] and Çetinkaya et al. [4] introduced and investigated further extensions of Appell’s hypergeometric functions of two variables and Lauricella’s hypergeometric functions of three variables by using the generalized Beta type function. Purohit et al. [5] investigated Chebyshev type inequalities involving fractional integral operator containing a multi-index Mittag-Leffler function in the kernel. Suthar et al. [6] introduced certain generalized forms of the fractional kinetic equation pertaining to the (p, q)-Mathieu-type power series using the Laplace transforms technique. Chandola et al. [7] defined a new extension of beta function using the Appell series and the Lauricella function. The interested reader may be referred to several recent papers on the subject (see, e.g., [8–11] and the references cited therein).
Hypergeometric functions in several variables have many applications in applied problems (see, e.g., [12–16]). Also, multidimensional hypergeometric functions are used to solve boundary value problems (Dirichlet problem, Neumann problem, Holmgren problem, etc) for multidimensional degenerate differential equations (see [17–19]). In [20], Exton defined twenty one complete hypergeometric functions in four variables denoted by the symbols K1, K2,
where
where
Here,
Recently, many authors have obtained several recursion formulas involving hypergeometric functions in several variables. In Opps et al. [24], introduced the recursion formulas for the Appell’s function F2 and gave its applications to radiation field problems. Wang [25] presented the recursion formulas for Appell functions F1, F2, F3 and F4. Sahai et al. [26,27] established the recursion formulas for Lauricella’s triple functions, Srivastava hypergeometric functions in three variables, k-variable Lauricella functions and the Srivastava-Daoust and related multivariable hypergeometric functions. Shehata et al. [28] discussed and derived new recursion relations for the Horn’s hypergeometric functions. In this present paper, we aim to establish several recursion formulas for the new hypergeometric functions in four variables defined by (1.1)–(1.4).
The following abbreviated notations are used in this paper. We, for example, write
Here, we establish several recursion formulas for our hypergeometric functions in four variables.
Theorem 2.1 The following recursion formulas hold true for the numerator parameter
Proof. From the definition of the hypergeometric function
we obtain the following contiguous relation:
To find a contiguous relation for
Iterating this process n-times, we obtain (5). For the proof of (6), replace the parameter
Iteratively, we get (6).
The recursion formulas from (7)–(14) can be proved in a similar manner.
Theorem 2.2 The following recursion formulas hold true for the numerator parameter
where
Proof. The proof of (19) is based upon the principle of a mathematical induction on
Replacing
By a simplification, (28) takes the form
Using the Pascal’s identity in (29), we have
This establishes (19) for n = m + 1. Hence, by induction, the result given in (19) is true for all values of n. The recursion formulas (20)–(26) can be proved in a similar manner.
Theorem 2.3 The following recursion formulas hold true for the denominator parameter
Proof. Applying the definition of the hypergeometric function
we have:
Using this contiguous relation to the
Theorem 2.4 The following recursion formulas hold true for the numerator parameter
Theorem 2.5 The following recursion formulas hold true for the numerator parameter
where
Theorem 2.6 The following recursion formulas hold true for the denominator parameter
Theorem 2.7 The following recursion formulas hold true for the numerator parameter
Theorem 2.8 The following recursion formulas hold true for the numerator parameter
where
Theorem 2.9 The following recursion formulas hold true for the denominator parameter
Theorem 2.10 The following recursion formulas hold true for the numerator parameter
Theorem 2.11 The following recursion formulas hold true for the numerator parameter
where
Theorem 2.12 The following recursion formulas hold true for the denominator parameter c of the
Hypergeometric functions in several variables play an essential role in diverse areas of science and engineering. The advancements in applied mathematics, mathematical physics, and other areas of science have led to increasing interest in the study of hypergeometric functions. Also, special functions and its properties are used to solve various problems in science and engineering. In this paper, we have derived several recursion formulas for new hypergeometric functions in four variables. Also, some interested particular cases and consequences of our results have been discussed. In the future, these recursion formulas for the hypergeometric functions in four variables may find applications in various branches of mathematics, mathematical physics, engineering and related areas of study.
Data Availability: The data used to support the findings of this study are available from the corresponding author upon request.
Authors’ Contributions: All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.
Funding Statement: The authors received no specific funding for this study.
Conflicts of Interest: The authors declare that they have no competing interests.
1. Agarwal, P., Chand, M., Purohit, S. D. (2015). A note on generating functions involving the generalized gauss hypergeometric functions. National Academy Science Letters, 37(5), 457–459. DOI 10.1007/s40009-014-0250-7. [Google Scholar] [CrossRef]
2. Agarwal, P., Qi, F., Chand, M., Jain, S. (2017). Certain integrals involving the generalized hypergeometric function and the Laguerre polynomials. Journal of Computational and Applied Mathematics, 313, 307–317. DOI 10.1016/j.cam.2016.09.034. [Google Scholar] [CrossRef]
3. Agarwal, P., Choi, J., Jain, S. (2015). Extended hypergeometric functions of two and three variables. Communications of the Korean Mathematical Society, 30(4), 403–414. DOI 10.4134/CKMS.2015.30.4.403. [Google Scholar] [CrossRef]
4. Çetinkaya, A., K.ymaz, I. O., Agarwal, P., Agarwal, R. (2018). A comparative study on generating function relations for generalized hypergeometric functions via generalized fractional operators. Advances in Difference Equations, 2018:156. DOI 10.1186/s13662-018-1612-0. [Google Scholar] [CrossRef]
5. Purohit, S. D., Jolly, N., Bansal, M. K., Singh, J., Kumar, D. (2020). Chebyshev type inequalities involving the fractional integral operator containing multi-index Mittag-Leffler function in the kernel. Applications and Applied Mathematics, 6, 29–38. [Google Scholar]
6. Suthar, D. L., Purohit, S. D., Araci, S. (2020). Solution of fractional kinetic equations associated with the (p, q)-Mathieu-type series, discrete dynamics in nature and society. Article ID 8645161, 7. DOI 10.1155/2020/8645161. [Google Scholar] [CrossRef]
7. Chandola, A., Pandey, R. M., Agarwal, R., Purohit, S. D. (2020). An extension of beta function, its statistical distribution, and associated fractional operator. Advances in Difference Equations, Article no. 684. DOI 10.1186/s13662-020-03142-6. [Google Scholar] [CrossRef]
8. Agarwal, P. (2014). Certain properties of the generalized gauss hypergeometric functions. Applied Mathematics & Information Sciences, 8(5), 2315–2320. DOI 10.12785/amis/080526. [Google Scholar] [CrossRef]
9. Choi, J., Agarwal, P. (2014). Certain fractional integral inequalities involving hypergeometric operators. East Asian Mathematical Journal, 30(3), 283–291. DOI 10.7858/eamj.2014.018. [Google Scholar] [CrossRef]
10. Nisar, K. S., Suthar, D. L., Agarwal, R., Purohit, S. D. (2020). Fractional calculus operators with appell function kernels applied to srivastava polynomials and extended Mittag-Leffler function. Advances in Difference Equations, Article no. 148. DOI 10.1186/s13662-020-02610-3. [Google Scholar] [CrossRef]
11. Purohit, S. D., Khan, A. M., Suthar, D. L., Dave, S. (2021). The impact on raise of environmental pollution and occurrence in biological populations pertaining to incomplete H-function. National Academy Science Letters, 44(3), 263–266. DOI 10.1007/s40009-020-00996-y. [Google Scholar] [CrossRef]
12. Frankl, F. I. (1973). Selected works in gas dynamics. Nauka, Moscow (in Russian). [Google Scholar]
13. Mathai, A. M., Saxena, R. K. (1973). Generalized hypergeometric functions with applications in statistics and physical sciences. Springer-Verlag, Berlin, Heidelberg and New York. [Google Scholar]
14. Niukkanen, A. W. (1983). Generalised hypergeometric series NF(x1,
15. Sneddon, I. N. (1980). Special functions of mathematical physics and chemistry. Third ed., Longman, London and New York. [Google Scholar]
16. Srivastava, H. M., Kashyap, B. R. K. (1982). Special functions in queuing theory and related stochastic processes. Academic Prees, New York, London and San Francisco. [Google Scholar]
17. Berdyshev, A. S., Hasanov, A., Ryskan, A. R. (2020). Solution of the neumann problem for one four-dimensional elliptic equation. Eurasian Mathematical Journal, 11(2), 93–97. DOI http://dx.doi.org/10.32523/2077-9879-2020-11-2-93-97. [Google Scholar]
18. Hasanov, A., Berdyshev, A. S., Ryskan, A. R. (2020). Fundamental solutions for a class of four-dimensional degenerate elliptic equation. Complex Variables and Elliptic Equations, 65(4), 632–647. DOI 10.1080/17476933.2019.1606803. [Google Scholar] [CrossRef]
19. Srivastava, H. M., Hasanov, A., Ergashev, T. G. (2020). A family of potentials for elliptic equations with one singular coefficient and their applications. Mathematical Methods in Applied Sciences, 43(10), 6181–6199. DOI 10.1002/mma.6365. [Google Scholar] [CrossRef]
20. Exton, H. (1976). Multiple hypergeometric functions and applications. IHalsted Press, New York, London, Sydney and Toronto. [Google Scholar]
21. Sharma, C., Parihar, C. L. (1989). Hypergeometric functions of four variables (I). The Journal of the Indian Academy of Mathematics, 11, 121–133. [Google Scholar]
22. Younis, J. A., Aydi, H., Verma, A. (2021). Some formulas for new quadruple hypergeometric functions, Journal of Mathematics. Article ID 5596299, 10. DOI 10.1155/2021/5596299. [Google Scholar] [CrossRef]
23. Srivastava, H. M., Karlsson, P. W. (1984). Multiple gaussian hypergeometric series. Ellis Horwood Ltd., Chichester. [Google Scholar]
24. Opps, S. B., Saad, N., Srivastava, H. M. (2009). Recursion formulas for Appell’s hypergeometric function F2 with some applications to radiation field problems. Applied Mathematics and Computation, 207, 545–558. DOI 10.1016/j.amc.2008.11.006. [Google Scholar] [CrossRef]
25. Wang, X. (2012). Recursion formulas for Appell functions. Integral Transforms and Special Functions, 23(6), 421–433. DOI 10.1080/10652469.2011.596483. [Google Scholar] [CrossRef]
26. Sahai, V., Verma, A. (2015). Recursion formulas for multivariable hypergeometric functions. Asian-European Journal of Mathematics, 8(4), 1550082, 50. [Google Scholar]
27. Sahai, V., Verma, A. (2016). Ecursion formulas for the Srivastava-Daoust and related multivariable hypergeometric functions. Asian-European Journal of Mathematics, 9(4), 1650081, 35. DOI 10.1142/S1793557116500819. [Google Scholar] [CrossRef]
28. Shehata, A., Moustafa, S. I. (2021). Some new results for horn’s hypergeometric functions
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |