Table of Content

Open Access iconOpen Access

ARTICLE

A Group Preserving Scheme for Burgers Equation with Very Large Reynolds Number

by ,

Department of Mechanical and Mechatronic Engineering, Taiwan Ocean University, Keelung, Taiwan. E-mail: csliu@mail.ntou.edu.tw

Computer Modeling in Engineering & Sciences 2006, 12(3), 197-212. https://doi.org/10.3970/cmes.2006.012.197

Abstract

In this paper we numerically solve the Burgers equation by semi-discretizing it at the n interior spatial grid points into a set of ordinary differential equations: u· = f(u,t), u ∈ Rn. Then, we take the dissipative behavior of Burgers equation into account by considering the magnitude ||u|| as another component; hence, an augmented quasilinear differential equations system X˙ = AX with X := (uT,||u||)T ∈ Mn+1 is derived. According to a Lie algebra property of A∈so(n,1) we thus develop a new numerical scheme with the transformation matrix G∈SOo(n,1) being an element of the proper orthochronous Lorentz group. The numerical results were in good agreement with exact solutions, and it can be seen that the group preserving scheme is better than other numerical methods. Even for very large Reynolds number the group preserving scheme supplemented with a spatial rescaling technique also provides a reliable result without inducing numerical instability.

Keywords


Cite This Article

APA Style
Liu, C. (2006). A group preserving scheme for burgers equation with very large reynolds number. Computer Modeling in Engineering & Sciences, 12(3), 197-212. https://doi.org/10.3970/cmes.2006.012.197
Vancouver Style
Liu C. A group preserving scheme for burgers equation with very large reynolds number. Comput Model Eng Sci. 2006;12(3):197-212 https://doi.org/10.3970/cmes.2006.012.197
IEEE Style
C. Liu, “A Group Preserving Scheme for Burgers Equation with Very Large Reynolds Number,” Comput. Model. Eng. Sci., vol. 12, no. 3, pp. 197-212, 2006. https://doi.org/10.3970/cmes.2006.012.197



cc Copyright © 2006 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1426

    View

  • 1012

    Download

  • 0

    Like

Share Link