Home / Journals / CMES / Vol.129, No.1, 2021
Table of Content
  • Open AccessOpen Access

    ARTICLE

    Data-Driven Determinant-Based Greedy Under/Oversampling Vector Sensor Placement

    Yuji Saito*, Keigo Yamada, Naoki Kanda, Kumi Nakai, Takayuki Nagata, Taku Nonomura, Keisuke Asai
    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 1-30, 2021, DOI:10.32604/cmes.2021.016603
    Abstract A vector-measurement-sensor-selection problem in the undersampled and oversampled cases is considered by extending the previous novel approaches: a greedy method based on D-optimality and a noise-robust greedy method in this paper. Extensions of the vector-measurement-sensor selection of the greedy algorithms are proposed and applied to randomly generated systems and practical datasets of flowfields around the airfoil and global climates to reconstruct the full state given by the vector-sensor measurement. More >

  • Open AccessOpen Access

    ARTICLE

    Predicting Genotype Information Related to COVID-19 for Molecular Mechanism Based on Computational Methods

    Lejun Gong1,2,*, Xingxing Zhang1, Li Zhang3, Zhihong Gao4
    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 31-45, 2021, DOI:10.32604/cmes.2021.016622
    (This article belongs to this Special Issue: Computer Methods in Bio-mechanics and Biomedical Engineering)
    Abstract Novel coronavirus disease 2019 (COVID-19) is an ongoing health emergency. Several studies are related to COVID-19. However, its molecular mechanism remains unclear. The rapid publication of COVID-19 provides a new way to elucidate its mechanism through computational methods. This paper proposes a prediction method for mining genotype information related to COVID-19 from the perspective of molecular mechanisms based on machine learning. The method obtains seed genes based on prior knowledge. Candidate genes are mined from biomedical literature. The candidate genes are scored by machine learning based on the similarities measured between the seed and candidate genes. Furthermore, the results of… More >

  • Open AccessOpen Access

    ARTICLE

    A Novel Named Entity Recognition Scheme for Steel E-Commerce Platforms Using a Lite BERT

    Maojian Chen1,2,3, Xiong Luo1,2,3,*, Hailun Shen4, Ziyang Huang4, Qiaojuan Peng1,2,3
    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 47-63, 2021, DOI:10.32604/cmes.2021.017491
    (This article belongs to this Special Issue: Innovation and Application of Intelligent Processing of Data, Information and Knowledge in E-Commerce)
    Abstract In the era of big data, E-commerce plays an increasingly important role, and steel E-commerce certainly occupies a positive position. However, it is very difficult to choose satisfactory steel raw materials from diverse steel commodities online on steel E-commerce platforms in the purchase of staffs. In order to improve the efficiency of purchasers searching for commodities on the steel E-commerce platforms, we propose a novel deep learning-based loss function for named entity recognition (NER). Considering the impacts of small sample and imbalanced data, in our NER scheme, the focal loss, the label smoothing, and the cross entropy are incorporated into… More >

  • Open AccessOpen Access

    REVIEW

    Deep Learning Applications for COVID-19 Analysis: A State-of-the-Art Survey

    Wenqian Li1, Xing Deng1,2,*, Haijian Shao1, Xia Wang3
    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 65-98, 2021, DOI:10.32604/cmes.2021.016981
    Abstract The COVID-19 has resulted in catastrophic situation and the deaths of millions of people all over the world. In this paper, the predictions of epidemiological propagation models, such as SIR and SEIR, are introduced to analyze the earlier COVID-19 propagation. The deep learning methods combined with transfer learning are familiar with classification-detection approaches based on chest X-ray and CT images are presented in detail. Besides, deep learning approaches have also been applied to lung ultrasound (LUS), which has been shown to be more sensitive than chest X-ray and CT images in detecting COVID-19. In the absence of a vaccine, the… More >

    Graphic Abstract

    Deep Learning Applications for COVID-19 Analysis: A <i>State-of-the-Art</i> Survey

  • Open AccessOpen Access

    ARTICLE

    Simulating the Effect of Temperature Gradient on Grain Growth of 6061-T6 Aluminum Alloy via Monte Carlo Potts Algorithm

    Qi Wu*, Jianan Li, Lianchun Long, Linao Liu
    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 99-116, 2021, DOI:10.32604/cmes.2021.015669
    Abstract During heat treatment or mechanical processing, most polycrystalline materials experience grain growth, which significantly affects their mechanical properties. Microstructure simulation on a mesoscopic scale is an important way of studying grain growth. A key research focus of this type of method has long been how to efficiently and accurately simulate the grain growth caused by a non-uniform temperature field with temperature gradients. In this work, we propose an improved 3D Monte Carlo Potts (MCP) method to quantitatively study the relationship between non-uniform temperature fields and final grain morphologies. Properties of the aluminum alloy AA6061-T6 are used to establish a trial… More >

  • Open AccessOpen Access

    ARTICLE

    Medical Waste Treatment Station Selection Based on Linguistic q-Rung Orthopair Fuzzy Numbers

    Jie Ling1,2, Xinmei Li1,2, Mingwei Lin1,2,*
    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 117-148, 2021, DOI:10.32604/cmes.2021.016356
    Abstract During the COVID-19 outbreak, the use of single-use medical supplies increased significantly. It is essential to select suitable sites for establishing medical waste treatment stations. It is a big challenge to solve the medical waste treatment station selection problem due to some conflicting factors. This paper proposes a multi-attribute decision-making (MADM) method based on the partitioned Maclaurin symmetric mean (PMSM) operator. For the medical waste treatment station selection problem, the factors or attributes (these two terms can be interchanged.) in the same clusters are closely related, and the attributes in different clusters have no relationships. The partitioned Maclaurin symmetric mean… More >

  • Open AccessOpen Access

    ARTICLE

    A Reliability Evaluation Method for Intermittent Jointed Rock Slope Based on Evolutionary Support Vector Machine

    Shuai Zheng, An-Nan Jiang*, Kai-Shuai Feng
    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 149-166, 2021, DOI:10.32604/cmes.2021.016761
    Abstract The randomness of rock joint development is an important factor in the uncertainty of geotechnical engineering stability. In this study, a method is proposed to evaluate the reliability of intermittent jointed rock slope. The least squares support vector machine (LSSVM) evolved by a bacterial foraging optimization algorithm (BFOA) is used to establish a response surface model to express the mapping relationship between the intermittent joint parameters and the slope safety factor. The training samples are obtained from the numerical calculation based on the joint finite element method during this process. Considering the randomness of the intermittent joint parameters in the… More >

  • Open AccessOpen Access

    ARTICLE

    Moving Least Squares Interpolation Based A-Posteriori Error Technique in Finite Element Elastic Analysis

    Mohd Ahmed1,*, Devender Singh2, Saeed Al Qadhi1, Nguyen Viet Thanh3
    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 167-189, 2021, DOI:10.32604/cmes.2021.014672
    (This article belongs to this Special Issue: Modeling Real World Problems with Mathematics)
    Abstract The performance of a-posteriori error methodology based on moving least squares (MLS) interpolation is explored in this paper by varying the finite element error recovery parameters, namely recovery points and field variable derivatives recovery. The MLS interpolation based recovery technique uses the weighted least squares method on top of the finite element method's field variable derivatives solution to build a continuous field variable derivatives approximation. The boundary of the node support (mesh free patch of influenced nodes within a determined distance) is taken as circular, i.e., circular support domain constructed using radial weights is considered. The field variable derivatives (stress… More >

  • Open AccessOpen Access

    ARTICLE

    Adaptive Object Tracking Discriminate Model for Multi-Camera Panorama Surveillance in Airport Apron

    Dequan Guo1, Qingshuai Yang2, Yu-Dong Zhang3, Gexiang Zhang1, Ming Zhu1, Jianying Yuan1,*
    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 191-205, 2021, DOI:10.32604/cmes.2021.016347
    (This article belongs to this Special Issue: Modeling and Analysis of Autonomous Intelligence)
    Abstract Autonomous intelligence plays a significant role in aviation security. Since most aviation accidents occur in the take-off and landing stage, accurate tracking of moving object in airport apron will be a vital approach to ensure the operation of the aircraft safely. In this study, an adaptive object tracking method based on a discriminant is proposed in multi-camera panorama surveillance of large-scale airport apron. Firstly, based on channels of color histogram, the pre-estimated object probability map is employed to reduce searching computation, and the optimization of the disturbance suppression options can make good resistance to similar areas around the object. Then… More >

  • Open AccessOpen Access

    ARTICLE

    Methodology for Road Defect Detection and Administration Based on Mobile Mapping Data

    Marina Davidović1,*, Tatjana Kuzmić1, Dejan Vasić1, Valentin Wich2, Ansgar Brunn2, Vladimir Bulatović1
    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 207-226, 2021, DOI:10.32604/cmes.2021.016071
    (This article belongs to this Special Issue: Intelligent Computing for Engineering Applications)
    Abstract A detailed inspection of roads requires highly detailed spatial data with sufficient precision to deliver an accurate geometry and to describe road defects visually. This paper presents a novel method for the detection of road defects. The input data for road defect detection included point clouds and orthomosaics gathered by mobile mapping technology. The defects were categorized in three major groups with the following geometric primitives: points, lines and polygons. The method suggests the detection of point objects from matched point clouds, panoramic images and ortho photos. Defects were mapped as point, line or polygon geometries, directly derived from orthomosaics… More >

Share Link

WeChat scan