Open Access iconOpen Access

ARTICLE

crossmark

ANC: Attention Network for COVID-19 Explainable Diagnosis Based on Convolutional Block Attention Module

by Yudong Zhang1,3,*, Xin Zhang2,*, Weiguo Zhu1

1 Jiangsu Key Laboratory of Advanced Manufacturing Technology, Huaiyin Institute of Technology, Huai’an, 223003, China
2 Department of Medical Imaging, The Fourth People’s Hospital of Huai’an, Huai’an, 223002, China
3 School of Informatics, University of Leicester, Leicester, LE1 7RH, UK

* Corresponding Authors: Yudong Zhang. Email: email; Xin Zhang. Email: email

(This article belongs to the Special Issue: Computer-Assisted Imaging Processing and Machine Learning Applications on Diagnosis of Chest Radiograph)

Computer Modeling in Engineering & Sciences 2021, 127(3), 1037-1058. https://doi.org/10.32604/cmes.2021.015807

Abstract

Aim: To diagnose COVID-19 more efficiently and more correctly, this study proposed a novel attention network for COVID-19 (ANC). Methods: Two datasets were used in this study. An 18-way data augmentation was proposed to avoid overfitting. Then, convolutional block attention module (CBAM) was integrated to our model, the structure of which is fine-tuned. Finally, Grad-CAM was used to provide an explainable diagnosis. Results: The accuracy of our ANC methods on two datasets are 96.32% ± 1.06%, and 96.00% ± 1.03%, respectively. Conclusions: This proposed ANC method is superior to 9 state-of-the-art approaches.

Keywords


Cite This Article

APA Style
Zhang, Y., Zhang, X., Zhu, W. (2021). ANC: attention network for COVID-19 explainable diagnosis based on convolutional block attention module. Computer Modeling in Engineering & Sciences, 127(3), 1037-1058. https://doi.org/10.32604/cmes.2021.015807
Vancouver Style
Zhang Y, Zhang X, Zhu W. ANC: attention network for COVID-19 explainable diagnosis based on convolutional block attention module. Comput Model Eng Sci. 2021;127(3):1037-1058 https://doi.org/10.32604/cmes.2021.015807
IEEE Style
Y. Zhang, X. Zhang, and W. Zhu, “ANC: Attention Network for COVID-19 Explainable Diagnosis Based on Convolutional Block Attention Module,” Comput. Model. Eng. Sci., vol. 127, no. 3, pp. 1037-1058, 2021. https://doi.org/10.32604/cmes.2021.015807

Citations




cc Copyright © 2021 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 4363

    View

  • 2900

    Download

  • 2

    Like

Share Link