Open Access iconOpen Access

ARTICLE

crossmark

Analysis of a Water-Inrush Disaster Caused by Coal Seam Subsidence Karst Collapse Column under the Action of Multi-Field Coupling in Taoyuan Coal Mine

Zhibin Lin1, Boyang Zhang1,2,*, Jiaqi Guo1

1 School of Civil Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
2 School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China

* Corresponding Author: Boyang Zhang. Email: email

(This article belongs to the Special Issue: Modeling and Simulation of Fluid flows in Fractured Porous Media: Current Trends and Prospects)

Computer Modeling in Engineering & Sciences 2021, 126(1), 311-330. https://doi.org/10.32604/cmes.2021.011556

Abstract

Minin-induced water inrush from a confined aquifer due to subsided floor karst collapse column (SKCC) is a type of serious disaster in the underground coal extraction. Karst collapse column (KCC) developed in a confined aquifer occurs widely throughout northern China. A water inrush disaster from SKCC occurred in Taoyuan coal mine on February 3, 2013. In order to analyze the effect of the KCC influence zone’s (KCCIZ) width and the entry driving distance of the water inrush through the fractured channels of the SKCC, the stress, seepage, and impact dynamics coupling equations were used to model the seepage rule, and a numerical FLAC3D model was created to determine the plastic zones, the vertical displacement development of the rock mass surrounding the entry driving working face (EDWF), and the seepage vector and water inflow development of the seepage field. The hysteretic mechanism of water inrush due to SKCC in Taoyuan coal mine was investigated. The results indicate that a water inrush disaster will occur when the width of the KCCIZ exceeds 16 m under a driving, which leads to the aquifer connecting with the fractured zones of the entry floor. Hysteretic water inrush disasters are related to the stress release rate of the surrounding rocks under the entry driving. When the entry driving exceeds about 10 m from the water inrush point, the stress release rate reaches about 100%, and a water inrush disaster occurs.

Keywords


Cite This Article

APA Style
Lin, Z., Zhang, B., Guo, J. (2021). Analysis of a water-inrush disaster caused by coal seam subsidence karst collapse column under the action of multi-field coupling in taoyuan coal mine. Computer Modeling in Engineering & Sciences, 126(1), 311-330. https://doi.org/10.32604/cmes.2021.011556
Vancouver Style
Lin Z, Zhang B, Guo J. Analysis of a water-inrush disaster caused by coal seam subsidence karst collapse column under the action of multi-field coupling in taoyuan coal mine. Comput Model Eng Sci. 2021;126(1):311-330 https://doi.org/10.32604/cmes.2021.011556
IEEE Style
Z. Lin, B. Zhang, and J. Guo, “Analysis of a Water-Inrush Disaster Caused by Coal Seam Subsidence Karst Collapse Column under the Action of Multi-Field Coupling in Taoyuan Coal Mine,” Comput. Model. Eng. Sci., vol. 126, no. 1, pp. 311-330, 2021. https://doi.org/10.32604/cmes.2021.011556

Citations




cc Copyright © 2021 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 3208

    View

  • 2289

    Download

  • 0

    Like

Share Link