Table of Content

Open Access iconOpen Access

ARTICLE

crossmark

Simulation Analysis on Mechanical Property Characterization of Carbon Nanotubes Reinforced Epoxy Composites

by Dan Li, Li Ding, Zhengang Liu, Qiang Li, Kaiyun Guo, Hailin Cao

1 Shenzhen Academy of Aerospace Technology, Shenzhen, 518057, China
2 Shanghai Aerospace Control Technology Institute, Shanghai, 201109, China
3 Shanghai Institute of Satellite Engineering, Shanghai, 201109, China
4 Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China

* Corresponding Author: Hailin Cao. Email: email

Computer Modeling in Engineering & Sciences 2020, 125(1), 145-171. https://doi.org/10.32604/cmes.2020.010822

Abstract

Carbon nanotube (CNT)-reinforced composites have ultra-high elastic moduli, low densities, and fibrous structures. This paper presents the multi-scale finite element modeling of CNT-reinforced polymer composites from micro- to macro-scales. The nanocomposites were modeled using representative volume elements (RVEs), and finite element code was written to simulate the modeling and loading procedure and obtain equivalent mechanical properties of the RVEs with various volume fractions of CNTs, which can be used directly in the follow-up simulation studies on the macroscopic model of CNT-reinforced nanocomposites. When using the programming to simulate the deformation and fracture process of the CNT-reinforced epoxy composites, the mechanical parameters and stress-strain curves of the composites on the macro-scale were obtained by endowing the elements of the lattice models with RVE parameters. Tensile experiments of the CNT-reinforced composites were also carried out. The validity of the finite element simulation method was verified by comparing the results of the simulations and experiments. Finite element models of functionally graded CNT-reinforced composites (FG-CNTRC) with different distributions were established, and the tensile and three-point-bending conditions for various graded material models were simulated by the methods of lattice model and birth-death element to obtain the tensile and bending parameters. In addition, the influence of the distribution and volume ratio of the CNTs on the performance of the graded composite material structures was also analyzed.

Keywords


Cite This Article

APA Style
Li, D., Ding, L., Liu, Z., Li, Q., Guo, K. et al. (2020). Simulation analysis on mechanical property characterization of carbon nanotubes reinforced epoxy composites. Computer Modeling in Engineering & Sciences, 125(1), 145-171. https://doi.org/10.32604/cmes.2020.010822
Vancouver Style
Li D, Ding L, Liu Z, Li Q, Guo K, Cao H. Simulation analysis on mechanical property characterization of carbon nanotubes reinforced epoxy composites. Comput Model Eng Sci. 2020;125(1):145-171 https://doi.org/10.32604/cmes.2020.010822
IEEE Style
D. Li, L. Ding, Z. Liu, Q. Li, K. Guo, and H. Cao, “Simulation Analysis on Mechanical Property Characterization of Carbon Nanotubes Reinforced Epoxy Composites,” Comput. Model. Eng. Sci., vol. 125, no. 1, pp. 145-171, 2020. https://doi.org/10.32604/cmes.2020.010822

Citations




cc Copyright © 2020 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2972

    View

  • 1773

    Download

  • 0

    Like

Share Link