Table of Content

Open Access iconOpen Access

ARTICLE

crossmark

Addition Formulas of Leaf Functions and Hyperbolic Leaf Functions

by Kazunori Shinohara

Department of Mechanical Systems Engineering, Daido University, Nagoya, 457-8530, Japan

* Corresponding Author: Kazunori Shinohara. Email: email-tokyo.ac.jp

Computer Modeling in Engineering & Sciences 2020, 123(2), 441-473. https://doi.org/10.32604/cmes.2020.08656

Abstract

Addition formulas exist in trigonometric functions. Double-angle and half-angle formulas can be derived from these formulas. Moreover, the relation equation between the trigonometric function and the hyperbolic function can be derived using an imaginary number. The inverse hyperbolic function is similar to the inverse trigonometric function , such as the second degree of a polynomial and the constant term 1, except for the sign − and +. Such an analogy holds not only when the degree of the polynomial is 2, but also for higher degrees. As such, a function exists with respect to the leaf function through the imaginary number i, such that the hyperbolic function exists with respect to the trigonometric function through this imaginary number. In this study, we refer to this function as the hyperbolic leaf function. By making such a definition, the relation equation between the leaf function and the hyperbolic leaf function makes it possible to easily derive various formulas, such as addition formulas of hyperbolic leaf functions based on the addition formulas of leaf functions. Using the addition formulas, we can also derive the double-angle and half-angle formulas. We then verify the consistency of these formulas by constructing graphs and numerical data.

Keywords


Cite This Article

APA Style
Shinohara, K. (2020). Addition formulas of leaf functions and hyperbolic leaf functions. Computer Modeling in Engineering & Sciences, 123(2), 441-473. https://doi.org/10.32604/cmes.2020.08656
Vancouver Style
Shinohara K. Addition formulas of leaf functions and hyperbolic leaf functions. Comput Model Eng Sci. 2020;123(2):441-473 https://doi.org/10.32604/cmes.2020.08656
IEEE Style
K. Shinohara, “Addition Formulas of Leaf Functions and Hyperbolic Leaf Functions,” Comput. Model. Eng. Sci., vol. 123, no. 2, pp. 441-473, 2020. https://doi.org/10.32604/cmes.2020.08656



cc Copyright © 2020 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 3717

    View

  • 2039

    Download

  • 0

    Like

Share Link