Home / Journals / CMES / Vol.123, No.2, 2020
Table of Content
  • Open AccessOpen Access

    ARTICLE

    Addition Formulas of Leaf Functions and Hyperbolic Leaf Functions

    Kazunori Shinohara*
    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 441-473, 2020, DOI:10.32604/cmes.2020.08656
    Abstract Addition formulas exist in trigonometric functions. Double-angle and half-angle formulas can be derived from these formulas. Moreover, the relation equation between the trigonometric function and the hyperbolic function can be derived using an imaginary number. The inverse hyperbolic function is similar to the inverse trigonometric function , such as the second degree of a polynomial and the constant term 1, except for the sign − and +. Such an analogy holds not only when the degree of the polynomial is 2, but also for higher degrees. As such, a function exists with respect… More >

  • Open AccessOpen Access

    ARTICLE

    Determination of Time-Dependent Coefficients for a Weakly Degenerate Heat Equation

    M. J. Huntul1, D. Lesnic2, *
    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 475-494, 2020, DOI:10.32604/cmes.2020.08791
    Abstract In this paper, we consider solving numerically for the first time inverse problems of determining the time-dependent thermal diffusivity coefficient for a weakly degenerate heat equation, which vanishes at the initial moment of time, and/or the convection coefficient along with the temperature for a one-dimensional parabolic equation, from some additional information about the process (the so-called over-determination conditions). Although uniquely solvable these inverse problems are still ill-posed since small changes in the input data can result in enormous changes in the output solution. The finite difference method with the Crank-Nicolson scheme combined with the nonlinear Tikhonov regularization are employed. The… More >

  • Open AccessOpen Access

    ARTICLE

    Innovative Design and Additive Manufacturing of Regenerative Cooling Thermal Protection System Based on the Triply Periodic Minimal Surface Porous Structure

    Xinglong Wang1,2, Cheng Wang1,2, Xin Zhou1,*, Mingkang Zhang3, Peiyu Zhang1, Lei Wang2
    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 495-508, 2020, DOI:10.32604/cmes.2020.09778
    (This article belongs to this Special Issue: Design & simulation in Additive Manufacturing)
    Abstract The new regenerative cooling thermal protection system exhibits the multifunctional characteristics of load-carrying and heat exchange cooling, which are fundamental for the lightweight design and thermal protection of hypersonic vehicles. Triply periodic minimal surface (TPMS) is especially suitable for the structural design of the internal cavity of regenerative cooling structures owing to its excellent structural characteristics. In this study, test pieces were manufactured using Ti6Al4V lightweight material. We designed three types of porous test pieces, and the interior was filled with a TPMS lattice (Gyroid, Primitive, I-WP) with a porosity of 30%. All porous test pieces were manufactured via selective… More >

  • Open AccessOpen Access

    ARTICLE

    A Staggered Grid Method for Solving Incompressible Flow on Unstructured Meshes

    Huawen Shu, Minghai Xu, Xinyue Duan*, Yongtong Li, Yu Sun, Ruitian Li, Peng Ding
    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 509-523, 2020, DOI:10.32604/cmes.2020.08806
    (This article belongs to this Special Issue: Advances in Modeling and Simulation of Complex Heat Transfer and Fluid Flow)
    Abstract A finite volume method based unstructured grid is presented to solve the two dimensional viscous and incompressible flow. The method is based on the pressure-correction concept and solved by using a semi-staggered grid technique. The computational procedure can handle cells of arbitrary shapes, although solutions presented in this paper were only involved with triangular and quadrilateral cells. The pressure or pressure-correction value was stored on the vertex of cells. The mass conservation equation was discretized on the dual cells surrounding the vertex of primary cells, while the velocity components and other scale variables were saved on the central of primary… More >

  • Open AccessOpen Access

    ARTICLE

    Toward a More Accurate Web Service Selection Using Modified Interval DEA Models with Undesirable Outputs

    Alireza Poordavoodi1, Mohammad Reza Moazami Goudarzi2,*, Hamid Haj Seyyed Javadi3, Amir Masoud Rahmani4, Mohammad Izadikhah5
    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 525-570, 2020, DOI:10.32604/cmes.2020.08854
    Abstract With the growing number of Web services on the internet, there is a challenge to select the best Web service which can offer more quality-of-service (QoS) values at the lowest price. Another challenge is the uncertainty of QoS values over time due to the unpredictable nature of the internet. In this paper, we modify the interval data envelopment analysis (DEA) models [Wang, Greatbanks and Yang (2005)] for QoS-aware Web service selection considering the uncertainty of QoS attributes in the presence of desirable and undesirable factors. We conduct a set of experiments using a synthesized dataset to show the capabilities of… More >

  • Open AccessOpen Access

    ARTICLE

    Numerical Study of the Distribution of Temperatures and Relative Humidity in a Ventilated Room Located in Warm Weather

    J. Serrano-Arellano1, J. M. Belman-Flores2,*, I. Hernández-Pérez3, K. M. Aguilar-Castro3, E. V. Macías-Melo3, F. Elizalde-Blancas2, J. M. Riesco-Ávila2, F. J. García-Rodríguez4
    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 571-602, 2020, DOI:10.32604/cmes.2020.08677
    Abstract In the present study, an analysis of the heat and mass transfer in a ventilated cavity in a warm climate zone was carried out to analyze, among others, the temperatures and percentage of relative humidity (RH). The governing equations of the mathematical model were solved through the finite volume method. We used the k-ε turbulence mode to find the results of the variables of interest in seven climate records on a given day. The velocity of the inlet flow of the air-H2O mixture was varied through the Reynolds number (Re) from 500 to 10000. The outdoor weather conditions considered were… More >

  • Open AccessOpen Access

    ARTICLE

    Terminal Sliding Mode Controllers for Hydraulic Turbine Governing System with Bifurcated Penstocks under Input Saturation

    Ji Liang1, Zhihuan Chen2,*, Xiaohui Yuan1,3,*, Binqiao Zhang3, Yanbin Yuan4
    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 603-629, 2020, DOI:10.32604/cmes.2020.09328
    Abstract Terminal sliding mode controller method is introduced to enhance the regulation performance of the hydraulic turbine governing system (HTGS). For the purpose of describing the characteristics of controlled system and deducing the control rule, a nonlinear mathematic model of hydraulic turbine governing system with bifurcated penstocks (HTGSBF) under control input saturation is established, and the input/output state linearization feedback approach is used to obtain the relationship between turbine speed and controller output. To address the control input saturation problem, an adaptive assistant system is designed to compensate for controller truncation. Numerical simulations have been conducted under fixed point stabilization and… More >

  • Open AccessOpen Access

    ARTICLE

    Machine Learning Model Comparison for Automatic Segmentation of Intracoronary Optical Coherence Tomography and Plaque Cap Thickness Quantification

    Caining Zhang1, Xiaopeng Guo2, Xiaoya Guo3, David Molony4, Huaguang Li2, Habib Samady4, Don P. Giddens4,5, Lambros Athanasiou6, Dalin Tang1*,7, Rencan Nie2,*, Jinde Cao8
    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 631-646, 2020, DOI:10.32604/cmes.2020.09718
    Abstract Optical coherence tomography (OCT) is a new intravascular imaging technique with high resolution and could provide accurate morphological infor￾mation for plaques in coronary arteries. However, its segmentation is still com￾monly performed manually by experts which is time-consuming. The aim of this study was to develop automatic techniques to characterize plaque components and quantify plaque cap thickness using 3 machine learning methods including convolutional neural network (CNN) with U-Net architecture, CNN with Fully convolutional DenseNet (FC-DenseNet) architecture and support vector machine (SVM). In vivo OCT and intravascular ultrasound (IVUS) images were acquired from two patients at Emory University with informed consent… More >

  • Open AccessOpen Access

    ARTICLE

    Building Information Modeling-Based Secondary Development System for 3D Modeling of Underground Pipelines

    Jun Chen1, *, Rao Hu2, Xianfeng Guo3, Feng Wu2
    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 647-660, 2020, DOI:10.32604/cmes.2020.09180
    (This article belongs to this Special Issue: Security Enhancement of Image Recognition System in IoT based Smart Cities)
    Abstract Underground pipeline networks constitute a major component of urban infrastructure, and thus, it is imperative to have an efficient mechanism to manage them. This study introduces a secondary development system to efficiently model underground pipeline networks, using the building information modeling (BIM)-based software Revit. The system comprises separate pipe point and tubulation models. Using a Revit application programming interface (API), the spatial position and attribute data of the pipe points are extracted from a pipeline database, and the corresponding tubulation data are extracted from a tubulation database. Using the Family class in Revit API, the cluster in the self-built library… More >

  • Open AccessOpen Access

    ARTICLE

    Comparison between the Seismic Performance of Buried Pipes and Pipes in a Utility Tunnel

    Wei Liu1, 2, *, Qianxiang Wu2
    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 661-690, 2020, DOI:10.32604/cmes.2020.07764
    (This article belongs to this Special Issue: Numerical Modeling and Simulation for Structural Safety and Disaster Mitigation)
    Abstract A utility tunnel system consists of pipes and ancillary facilities. In this paper, a finite element model of a concrete utility tunnel with pipes inside is established. Several tunnel segments were built to simulate a real utility tunnel, while the pipe was fixed by springs on the brackets in the utility tunnel. Using the discrete soil spring element to simulate the soil-structure interaction, actual earthquake records were adopted as excitation to analyze the seismic responses of pipes in a utility tunnel. Moreover, the influences of different parameters, including soil type, earthquake records, and field apparent wave velocity on the seismic… More >

Per Page:

Share Link

WeChat scan