Table of Content

Open Access

ARTICLE

Online Group Recommendation with Local Optimization

Haitao Zou*, 1, Yifan He1, Shang Zheng1, Hualong Yu1, Chunlong Hu1
School of Computer Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
*Corresponding Author: Haitao Zou. Email: .

Computer Modeling in Engineering & Sciences 2018, 115(2), 217-231. https://doi.org/ 10.3970/cmes.2018.00194

Abstract

There are some scenarios that need group recommendation such as watching a movie or a TV series, selecting a tourist destination, or having dinner together. Approaches in this domain can be divided into two categories: Creating group profiles and aggregating individual recommender list. Yet none of the above methods can handle the online group recommendation both efficiently and accurately and these methods either strongly limited by their application environment, or bring bias towards those users having limited connections with this group. In this work, we propose a local optimization framework, using sub-group profiles to compute the item relevance. Such method can captures and removes the bias existed in the traditional group recommendation algorithms in a certain degree. It can then be used to derive single-user recommendation. We also propose an approach to overcome the problem caused by dynamic change or user updating about his social network, which detects the target user’s group by analyzing the link types between he and his neighbours, and then use the group information to generate his recommendations. Experimental analysis for group and personal recommendation on three different sizes of MovieLens datasets show fairly good results, our method consistently outperform several state-of-the-arts in efficiency. And we also provide the explanations behind the phenomena during the experiments.

Keywords

Group recommendation, local optimization, social network.

Cite This Article

Zou, H., He, Y., Zheng, S., Yu, H., Hu, C. (2018). Online Group Recommendation with Local Optimization. CMES-Computer Modeling in Engineering & Sciences, 115(2), 217–231.



This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1028

    View

  • 539

    Download

  • 0

    Like

Related articles

Share Link

WeChat scan