Home / Journals / CMES / Vol.109-110, No.4, 2015
Special Issues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    A RIM-based Time-domain Boundary Element Method for Three-Dimensional Non-homogeneousWave Propagations

    Liu Liqi1, Wang Haitao1,2
    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.4, pp. 303-324, 2015, DOI:10.3970/cmes.2015.109.303
    Abstract This paper presents a three-dimensional (3-D) boundary element method (BEM) scheme based on the Radial Integration Method (RIM) for wave propagation analysis of continuously non-homogeneous problems. The Kelvin fundamental solutions are adopted to derive the boundary-domain integral equation (BDIE). The RIM proposed by Gao (Engineering Analysis with Boundary Elements 2002; 26(10):905-916) is implemented to treat the domain integrals in the BDIE so that only boundary discretization is required. After boundary discretization, a set of second-order ordinary differential equations with respect to time variable are derived, which are solved using the Wilson-q method. Main advantages of More >

  • Open AccessOpen Access

    ARTICLE

    Meshless LocalWeak form Method Based on a Combined Basis Function for Numerical Investigation of Brusselator Model and Spike Dynamics in the Gierer-Meinhardt System

    Mohammad Ilati1, Mehdi Dehghan2
    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.4, pp. 325-360, 2015, DOI:10.3970/cmes.2015.109.325
    Abstract In this paper, at first, a new combined shape function is proposed. Then, based on this shape function, the meshless local weak form method is applied to find the numerical solution of time-dependent non-linear Brusselator and Gierer- Meinhardt systems. The combined shape function inherits the properties of radial point interpolation (RPI), moving least squares (MLS) and moving Kriging (MK) shape functions and is controlled by control parameters, which take different values in the domain [0;1]. The combined shape function provides synchronic use of different shape functions and this leads to more flexibility in the used More >

  • Open AccessOpen Access

    ARTICLE

    A Multiscale Method Based on the Fibre Configuration Field, IRBF and DAVSS for the Simulation of Fibre Suspension Flows

    H.Q. Nguyen1, C.-D. Tran1, T. Tran-Cong1
    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.4, pp. 361-403, 2015, DOI:10.3970/cmes.2015.109.361
    Abstract In this paper, an Integrated Radial Basis Function (IRBF)-based multiscale method is used to simulate the rheological properties of dilute fibre suspensions. For the approach, a fusion of the IRBF computation scheme, the Discrete Adaptive Viscoelastic Stress Splitting (DAVSS) technique and the Fibre Configuration Field has been developed to investigate the evolution of the flow and the fibre configurations through two separate computational processes. Indeed, the flow conservation equations, which are expressed in vorticity-stream function formulation, are solved using IRBF-based numerical schemes while the evolution of fibre configuration fields governed by the Jeffery’s equation is… More >

Per Page:

Share Link