Open Access
ARTICLE
Extreme Learning Machines Based on Least Absolute Deviation and Their Applications in Analysis Hard Rate of Licorice Seeds
College of Science, China Agricultural University, Beijing, 100083, China.
Corresponding author: Liming Yang; E-mail: cauyanglm@163.com
College of Agriculture and Biotechnology, China Agricultural University, Beijing, 100193, China
Computer Modeling in Engineering & Sciences 2015, 108(1), 49-65. https://doi.org/10.3970/cmes.2015.108.049
Abstract
Extreme learning machine (ELM) has demonstrated great potential in machine learning and data mining fields owing to its simplicity, rapidity and good generalization performance. In this work, a general framework for ELM regression is first investigated based on least absolute deviation (LAD) estimation (called LADELM), and then we develop two regularized LADELM formulations with the l2-norm and l1-norm regularization, respectively. Moreover, the proposed models are posed as simple linear programming or quadratic programming problems. Furthermore, the proposed models are used directly to analyze the hard rate of licorice seeds using near-infrared spectroscopy data. Experimental results on eight different spectral regions show the feasibility and effectiveness of the proposed models.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.