Table of Content

Open Access iconOpen Access

ARTICLE

A Fully Discrete SCNFVE Formulation for the Non-stationary Navier-Stokes Equations

by Zhendong Luo1, Fei Teng2

School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China.
School of Mathematics Sciences, Kaili college, Kaili, 556011, China.

Computer Modeling in Engineering & Sciences 2014, 101(1), 33-58. https://doi.org/10.3970/cmes.2014.101.033

Abstract

A semi-discrete Crank-Nicolson (CN) formulation about time and a fully discrete stabilized CN finite volume element (SCNFVE) formulation based on two local Gauss integrals and parameter-free with the second-order time accuracy are established for the non-stationary Navier-Stokes equations. The error estimates of the semi-discrete and fully discrete SCNFVE solutions are derived. Some numerical experiments are presented to illustrate that the fully discrete SCNFVE formulation possesses more advantages than its stabilized finite volume element formulation with the first-order time accuracy, thus validating that the fully discrete SCNFVE formulation is feasible and efficient for finding the numerical solutions of the non-stationary Navier-Stokes equations.

Keywords


Cite This Article

APA Style
Luo, Z., Teng, F. (2014). A fully discrete SCNFVE formulation for the non-stationary navier-stokes equations. Computer Modeling in Engineering & Sciences, 101(1), 33-58. https://doi.org/10.3970/cmes.2014.101.033
Vancouver Style
Luo Z, Teng F. A fully discrete SCNFVE formulation for the non-stationary navier-stokes equations. Comput Model Eng Sci. 2014;101(1):33-58 https://doi.org/10.3970/cmes.2014.101.033
IEEE Style
Z. Luo and F. Teng, “A Fully Discrete SCNFVE Formulation for the Non-stationary Navier-Stokes Equations,” Comput. Model. Eng. Sci., vol. 101, no. 1, pp. 33-58, 2014. https://doi.org/10.3970/cmes.2014.101.033



cc Copyright © 2014 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1167

    View

  • 935

    Download

  • 0

    Like

Share Link