Special Issue "Soft Computing Techniques in Materials Science and Engineering"

Submission Deadline: 31 December 2021
Submit to Special Issue
Guest Editors
Prof. Dr. Panagiotis G. Asteris, School of Pedagogical and Technological Education, Greece
Dr. Danial Jahed Armaghani, University of Malaya, Malaysia
Prof. Dr. Liborio Cavaleri, University of Palermo, Italy
Dr. Hoang Nguyen, Hanoi University of Mining and Geology, Vietnam


Heuristic and computing techniques are technologies that are poised to transform the way humans will interact with machines, and the role that machines will play in all spheres of human life. On the one hand, there is the exhilaration and excitement of the immense potential of these technologies to enhance and enrich human life, and on the other hand, there is fear and apprehension of a dystopian future where machines have taken over.

These techniques are considered in the category of computer science, involved in the research, design, and application of intelligent computer. Traditional methods for modelling and optimizing complex structure systems require huge amounts of computing resources, and computing-based solutions can often provide valuable alternatives for efficiently solving problems in engineering. Such techniques due to making non-linear and complex relationships between dependent and independent variables can be performed in the field of engineering with a high degree of accuracy. In this way, many new intelligence models can be introduced for different applications of engineering.

The focus of this Special Issue is on the development of computational methods for solving problems in fields of engineering. Articles submitted to this Special Issue can also be concerned with the most significant recent soft computing, optimization algorithms, hybrid intelligent systems and their applications in engineering sciences. We invite researchers to contribute original research articles, as well as review articles, that will stimulate the continuing research effort on applications of the meta-heuristic and computing techniques to assess/solve engineering problems.

I. Artificial Neural Networks (ANNs)
II. Building Materials
III. Cement-based Mortars
IV. Composite Materials
V. Concrete Materials
VI. Evolutionary multimodal optimization
VII. Forecasting Models
VIII. Fuzzy set theory and hybrid fuzzy models
IX. Genetic algorithm and genetic programming
X. Heuristic Models
XI. Hybrid intelligent systems
XII. Nanomaterials

Published Papers
  • Maximum Probabilistic and Dynamic Traffic Load Effects on Short-to-Medium Span Bridges
  • Abstract The steadily growing traffic load has resulted in lots of bridge collapse events over the past decades, especially for short-to-medium span bridges. This study investigated probabilistic and dynamic traffic load effects on short-to-medium span bridges using practical heavy traffic data in China. Mathematical formulations for traffic-bridge coupled vibration and probabilistic extrapolation were derived. A framework for extrapolating probabilistic and dynamic traffic load effect was presented to conduct an efficient and accurate extrapolation. An equivalent dynamic wheel load model was demonstrated to be feasible for short-to-medium span bridges. Numerical studies of two types of simply-supported bridges were conducted based on site-specific… More
  •   Views:235       Downloads:199        Download PDF

  • The Influence of Various Structure Surface Boundary Conditions on Pressure Characteristics of Underwater Explosion
  • Abstract The shock wave of the underwater explosion can cause severe damage to the ship structure. The propagation characteristics of shock waves near the structure surface are complex, involving lots of complex phenomena such as reflection, transmission, diffraction, and cavitation. However, different structure surface boundaries have a significant effect on the propagation characteristics of pressure. This paper focuses on investigating the behavior of shock wave propagation and cavitation from underwater explosions near various structure surfaces. A coupled Runge–Kutta discontinuous Galerkin (RKDG) and finite element method (FEM) is utilized to solve the problem of the complex waves of fluids and structure dynamic… More
  •   Views:352       Downloads:330        Download PDF

  • A Novel Heuristic Algorithm for the Modeling and Risk Assessment of the COVID-19 Pandemic Phenomenon
  • Abstract The modeling and risk assessment of a pandemic phenomenon such as COVID-19 is an important and complicated issue in epidemiology, and such an attempt is of great interest for public health decision-making. To this end, in the present study, based on a recent heuristic algorithm proposed by the authors, the time evolution of COVID-19 is investigated for six different countries/states, namely New York, California, USA, Iran, Sweden and UK. The number of COVID-19-related deaths is used to develop the proposed heuristic model as it is believed that the predicted number of daily deaths in each country/state includes information about the… More
  •   Views:2433       Downloads:861        Download PDF