Submission Deadline: 31 August 2023 (closed) View: 298
The industrial system is the nerve center widely used in the fields of critical infrastructure such as power, petroleum and petrochemical, water conservancy, transportation, and nuclear facilities. With the increasing demand for intelligent manufacturing, the essence of the modern industrial system has been transformed into human-cyber-physical systems. Therefore, the industrial system has become a complex system with many factors, and the modeling and design guided by machine learning (ML) are gradually applied to large-scale production with higher accuracy.
In recent years, industrial production has reached an unprecedented level. In the complex industrial system operation process, huge amounts of production, operation, control, and other kinds of data are generated, which can be generally characterized by massiveness, multi-source, heterogeneity, and high-dimension. The accumulation of big data not only promotes the development of production technology but also brings great challenges. Due to its limited representation ability, the traditional modeling method cannot fully extract the information contained in the big data of the industrial system, thus, intelligent modeling intends to fully explore the useful information in big data by constructing an appropriate intelligent modeling structure. Accordingly, ML-guided directed evolution has become a new paradigm for industrial design that enables the optimization of complex functions. Both structured and unstructured data from industrial systems can be applied to ML intelligent modeling use to predict how sequence maps function without requiring a detailed model of the underlying physics pathways. Then it can help the system to make more accurate intelligent decisions and promote the concept of digital twins.
The focus of this Special Issue is on the development of ML-guided intelligent modeling for solving problems in the fields of industrial. Articles submitted to this Special Issue can also be concerned with the intelligence algorithms for systematic modeling, simulation, and optimization of complex industrial systems. We invite researchers to contribute original research articles, as well as review articles, that will stimulate the continuing research effort on applications of data-enabled intelligence about complex industrial systems and computing techniques to assess/solve engineering problems.
Topics of interest include but are not restricted to:
-Industrial applications of complex system theory
-Machine learning and deep learning for complex system modeling
-Filter-aided methods for industrial processes
-Data-driven control of industrial systems
-Artificial intelligence for system optimization
-Neurodynamic analysis for industrial process
-Detection classification for complex industrial systems
-Distributed multi-agent modeling algorithms and its industrial applications
-Robust modeling methods for industrial process
-the other related topics