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ABSTRACT

Stress is a normal reaction of the human organism which triggered in situations that require a certain level of
activation. This reaction has both positive and negative effects on everyone’s life. Therefore, stress management
is of vital importance in maintaining the psychological balance of a person. Thermal-based imaging technique is
becoming popular among researchers due to its non-contact conductive nature. Moreover, thermal-based imaging
has shown promising results in detecting stress in a non-contact and non-invasive manner. Compared to other
non-contact stress detection methods such as pupil dilation, keystroke behavior, social media interaction and
voice modulation, thermal-based imaging provides better features with clear boundaries and requires no heavy
methodology. This paper presented a brief review of previous work on thermal imaging related stress detection in
humans. This paper also presented the stages of stress detection based on thermal face signatures such as dataset
type, thermal image face detection, feature descriptors and classification performance comparisons are presented.
This paper can help future researchers to understand stress detection based on thermal imaging by presenting the
popular methods previous researchers use for stress detection based on thermal images.
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1 Introduction

The word “stress” is described in many contexts [1]. An inclusive definition of stress refers to
the biological response to a physiological or psychological stimulus [2]. Emotional and physical
stressors can be detrimental to the human body. The effects of stress on human wellbeing and
symptoms have been extensively researched in recent times [3–9]. Kim [10] found that people in
their 30 s experience the highest stress level due to mask-wearing. The authors reveal that the early
stress detection techniques depend on psychological questionnaires [11] and consultations [12].

In recent years, researchers have been exploring the non-invasions method to detect stress.
Skin temperature is one of the established stress markers based on physiological signals. The
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amount of heat dissipated by the body has the capacity as a tool to measure the temperature of
the human skin. Body temperature is affected by blood flow, metabolic activities, subcutaneous
tissue structure, sympathetic nervous (SNS) activities, and muscle contractions [13–15]. The healthy
people’s body temperature was recorded between 35.5◦C and 37.7◦C under normal conditions.
The human body can regulate body temperature to keep it stable [16]. A noticeable rise in core
body temperature may indicate an illness such as fever or hypothermia and a change in the
human affective state [17]. Hypothalamus is a part of the brain located at the brain base respon-
sible for regulating body temperature. Sometimes it may fail to function well under abnormal
conditions [18,19]. However, neglecting treatment of the symptom of continuously high body
temperature may lead to harmful consequences; injures body organs. Another factor that affects
human temperature is muscle contractions which generate heat through muscles movement [20].
The internal body heat is transferred from the internal issue to the human skin via the blood
supply in the vascular system. The control of blood flow in the skin by the processes of vasocon-
striction and vasodilation processes is part of the thermoregulatory mechanism, i.e., the thermal
homeostasis of internal body temperature to external factors such as cold and heat [18,21]. The
skin surface is an essential body part in regulating core body temperature: the body heat is
transferred to the skin via internal vessels and the skin loses the heat in several ways: evaporation,
thermal radiation, conduction, and exhalation through a respiratory process [22–25].

Pavlidis firstly discovered the alarming thermal signature and announced an increment of
blood demand in the periorbital region [26–30]. Consequently, it contributes to effective feature
extraction, thus provides extensive research on the physiological signals of the human body such
as breathing [28], sweating [30], blood flow velocity [31,32], and heart rate [29]. Tab. 1 summarized
the commonly used model in literature that detects human stress.

Table 1: Literature work of human stress state recognition

Author Modal Feature

[33,34] Eyes activity Pupil Dilation
Gaze Movement
Blinking rate

[35] Key stroke Key stroke pattern and dilation
[36] Interaction on social media Detect in user post on social media
[37–39] Speech signal Pitch

Jitter
Energy
Speaking rate
Length of pauses

[40–42] Facial expression Local binary patterns (LBP-TOP)
3D histogram of oriented gradients (3DHOG)
Weighted random forest (WRF)
3D scale-invariant feature transform (3DSIFT)

(Continued)



CMES, 2021 3

Table 1 (Continued)

Author Modal Feature

[43] Skin temperature Slope of skin temperature
Mean of skin temperature
Temperature deviation
Temperature standard deviation

[43] Galvanic Skin Resistance (GSR) Number of response
Mean value of GSR
Amplitude of response
Rising time of response
Energy of response

[44] Heart rate Mean
Deviation
Deviation squared

Many studies have explored the possibility of stress detection with facial skin temperature
[45–47]. Researchers also investigated other modalities such as pupil dilation, breathing pattern,
behavior pattern, keystroke pattern, and social media activity. In [25,41,42], the authors proposed
a novel method to detect stress based on facial expressions. The results demonstrated that the pro-
posed method has similar accuracy performance to other state-of-the-art methods. However, this
method is proposed based on RGB images. Similar method can be proposed for thermal images as
a new potential research direction. Compared to other modalities, thermal-based stress detection
provides a reliable accuracy rate concerning user privacy. To investigate the facial skin temperature
for human stress recognition, Al Qudah et al. [48] explored the recent use of thermal imaging
in distinguishing human affective states and the problems that have surfaced. The authors also
suggested a framework for solving the issues discussed and the mentioned challenges. Therefore,
this paper discussing previous literature regarding facial detection in the thermal image and stress
recognition based on the facial thermal signature. More importantly, this paper will reveal the
future research potential and challenges faced by the previous work and the solution proposed to
overcome these limitations.

The following is the structure of this paper: Section II will discuss the stages in thermal-
based stress state detection such as dataset type, face detection method, facial temperature as stress
signature, and stress classification performance comparison. Section III will detail the modalities
listed above. Section VI will propose future work to extend the knowledge of stress detection
based on thermal imaging.

2 Thermal Based Stress State Recognition

Thermal imaging is one of the popular topics among researchers to detect stress in a
non-invasion manner. Thermal camera technology was initially unfeasible due to its low reso-
lution, high cost, and heavyweight, combined with the ability to regulate the surroundings for
a steady ambient temperature [49]. Thermal system inventions further paved the way for new
varieties of accessible and adaptable thermal sensors that are lightweight, low-cost, and have
high resolutions, such as handheld thermal sensors. As a result, sophisticated thermal sensors
encourage researchers to investigate thermal imaging in laboratories and real-world settings in
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many applications, including human stress recognition [50]. Moreover, the COVID-19 pandemic
enhanced the ability of thermal sensors. It can detect human face temperatures in a non-invasive
and contactless manner. ANS is responsible for coordinating human physiological signals such
as heart rate, respiration rate, blood perfusion, and body temperature during human stress state
from a psychophysiological standpoint. Thermal imaging can measure the temporal temperatures
of the face [51]. The usage of thermal imaging is a realistic solution to achieve stress detection
in a contactless manner.

Several studies have also investigated thermal imaging to explore other psychological signals
that correlates with human stress states like respiration rate, pulse rate, and skin temperature.
It has the potential to transcend the limitations of contact-based and intrusive physiological
sensors [52]. When thermal imaging to visual (RGB) imaging, studies have shown that ther-
mal images have many benefits over RGB images. The variation of human skin colour, facial
structure, texture, ethical contexts, cultural distinctions, and eyes could affect the accuracy of
the human emotion includes stress state applied visual-based methods. Visual-based systems are
also sensitive to illumination change. In unregulated settings, visual-based imagination techniques
have unreliable recognition precision [52]. Thermal imaging, on the other hand, is light-resistant
and can be used in low-light situations. The connection between the human stress state and the
variety of skin temperature is confirmed with the thermo-muscular and hemodynamic-metabolic
components [16,23]. Researchers have focused on thermal imaging that encourages them to gauge
the transient temperature esteems from the selected facial region to detect the stress state. In the
literature, a temperature difference between the left and right sides of the face, and temperature
change in the periorbital and nasal facial regions, has been linked to human stress.

However, the alteration in blood flow in the periorbital area allows measuring both instanta-
neous and prolonged stress conditions [51]. This method is a procedural step where begins with
a thermal dataset or thermal signature data collection activity. Thermal imaging is typically used
in laboratory experiments to collect data. Stress stimulation is applied to cause participants to
become stressed, and their facial thermal signatures are measured. Subsequently, the preprocessing
and feature extraction approach is adopted to extract facial features and classify them with a
classification procedure. However, the accuracy of the performance for each method is varied. The
accuracy of the approach also depends on the number of chosen criteria, the feature descriptor
and the classification method. Tab. 2 summarized the previous work related to human stress
detection based on facial skin temperature based on the timeline.

Table 2: Literature work of thermal-based human stress state recognition

Author Objective Year

[53] Zhen Zhu contributed a novel method to segment forehead thermal
signature to improve stress detection in thermal imaging.

2007

[54] Hong et al. demonstrated that the variation of thermal patterns
between emotional stress and physical stress. This study revealed the
potential of the periorbital and cheek as a stress marker

2009

[55] Cross conducted a study to detect stress based on thermal signals and
suggested that the cheek can be a prominent feature for mental and
physical stress detection.

2013

(Continued)
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Table 2 (Continued)

Author Objective Year

[56] Bashar attempted to study thermal variation in the periorbital region
as a candidate for better deception detection.

2014

[57] Jenkins and Brown studied the three-way correlation between forehead
temperatures, frontal EEG and self-report. The findings established that
the right-domain group has a remarkable correlation while no
correlation for the left-domain. This reveals the insight of the
temperature variation dependent.

2014

[58] Sorostinean et al. studied the temperature variation of a subject when
engaging with a robot. The study shows little correlation is proved with
stress and claimed more studies are needed to support the findings.

2015

[59] Haji proposed a new approach detecting stress in thermal images based
on SIFT feature to match RGB and thermal. The findings show that
the forehead is highly correlated to stress.

2015

[60] Abouelenien et al. demonstrated that thermal variations exist in
participants and concluded that thermal imaging can be applied for
non-invasions stress detections. The authors have also proven that the
fusion of thermal features with other physiological traits outperforms
stress detection by single sensors.

2016

[61] Baltaci studied the stress classification-based fusion features of thermal
and pupil.

2016

[62] Kan Hong proposed a method to assess stress in real-time. The study
has proven the correlation between stress markers with temperature
variation in periorbital. It is proven that thermal imaging has the
ability as a stress marker.

2017

[50] Yho Choo proposed automatic stress recognition thru mobile thermal
imaging. In this study, the author proposed Optimal Quantization and
thermal gradient flow techniques to extract blood dispersions of the
facial capillary. It contributed that have chances to discriminate
multiple stress levels.

2017

[63] Abdelrahman et al. suggested that the possibility to estimate and
quantifying the mental load.

2017

[64] Nilesh explored thermal imaging to classify challenged individuals from
deception.

2017

[65] Vasavi studied the ability of thermal signature to detect psycho
psychological of the subject. The authors proposed two methods of
signal extraction on two regions. The result proves better accuracy than
a similar experiment done by Pavlidis et al. [53].

2018

(Continued)
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Table 2 (Continued)

Author Objective Year

[66] Vashni applied regression modelling to identify the most prominent
thermal feature for better stress detection. This study achieves better
accuracy than a similar study done by her. This study also proved that
periorbital is a good candidate as a thermal signature for stress
detection.

2018

[67] Kopaczka conducted an experiment to measure temperature changes
over stress stimulation activity based on the GLCM feature. This study
established that the temperature variation occurs in the upper lip region
when stress invokes.

2018

[68] Stoynova studied the thermography changes due to student cognitive
load during knowledge assessment tests.

2018

[69] Changjiang investigated the effectiveness of the face temperature as a
marker for stress detection.

2018

[70] Derakhshan attempted to identify good performing machine learning
techniques to increase accuracy. His studies add to evidence that
thermal imaging holds high accuracy in detecting deception compared
to golden physiological measurement. This study also shows that
perinasal and chin are the most engaging ROIs during mental state
assessment.

2020

[71] Jared studied the impact of psychophysical stimuli impact on facial
thermal emissions. They compared numerical analysis and deep
learning methods to classify stress states.

2020

[45] Hong proposed a method to detect physical stress by maximizing
thermal signature.

2020

[72] Reshma proposed a hybrid system to detect stress. 2021
[73] Kumar proposed StressNet. 2021

2.1 Type of Data
In previous literature, there are two types of data identified; static facial image and moving

face. Initially, studies begin with static facial image detection and recognize a few regions of
interest on the facial. In the study conducted by [45], participants have to restrict their head
movement. In the real world, it is an impractical approach to instruct the subject to be static.
This limitation emphasizes the importance to track the facial in motion. Several studies focused
on automating facial detection in thermal imaging where the participant can move freely. The
majority of studies conducted self-experiment to collect their dataset. A laboratory experiment
was conducted in [62,68,69,74] to collect thermal images and other physiological signals.

2.2 Methods for Face Detection in Thermal-Based Image
Face detection is the first step in stress detection based on the facial thermal image. Thermal

images are commonly used in many circumstances where ordinary perception is limited, hindered,
or inadequate. For example, during night surveillance and fugitive searches. The facial detection
algorithm in the thermal image was inefficient in the beginning and was also not sophisticated
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for visual RGB images. Many studies reported this as a limitation that affects the experiment
methodology and findings. Several stress detection methods prohibit head movement during the
data collection phase. This is because thermal imaging has limitations for many head move-
ments. As in [62], the authors willingly crop regions of interest (ROIs) manually due to this
limitation. The common practice in face detection in the scope of stress detection based on
the thermal image is knowledge-based techniques feature invariant facial approaches, template
matching method, appearance-based method, colour information, and fusion with visible spectrum
imaging. In previous literature, the methodology involved in facial detection in thermal imaging is
classified as appearance-based [75,76], feature extraction [77–79], fusion with RGB image [80–85]
and multimodal analysis.

Zheng [86] proposed the Projection Project Analysis (PPA) algorithm for face detection algo-
rithm. Studies related to facial thermal images adapted this algorithm to detect face regions.
Zheng [75] continued the experiment that adapted PPA to detect faces that have eyeglasses. One of
the main limitations of thermal imaging is facial occlusion, which may occur from glass opacity
in individuals who are eye-glass wearers. Therefore, occlusion will prevent thermal sensors from
reading the heat pattern produced in that region. Several models have been introduced to handle
such limitations; different facial ROI is being explored to tackle this challenge. Basu et al. [87]
proposed a thermal-based occluded images model by applied Kotani Thermal Facial Expression
Database (KTFE) as input images and the Viola-Jones algorithm for facial detection. The study
applied a median filter to remove noise and Contrast Limited Adaptive Histogram Equalization
(CLAHE) for image enhancement. The study selected six facial patches: forehead, eyes, right and
left cheeks, nose, and mouth. Hu’s [88] seven-moment invariant methods were chosen for feature
extraction and the classification process. The study selected multi-scale SVM to classify four basic
emotions and the average accuracy was 87.5%.

A number of studies [45,89,90] applied a state-of-the-art face detection algorithm, the Haar-
based Viola-Jones face detection algorithm [91]. Reese et al. [90] conclusively proven that learning-
based methods; Viola-Jones and Gabor have a high tendency to detect a face, and the Viola-Jones
algorithm can be used as mainstream for face detection in thermal images. Basbrain et al. [92] sug-
gested strategies for improving the Viola-Jones algorithm’s face detection performance in thermal
images. The findings suggest that the Viola-Jones method with LBP performs significantly better
in thermal images vs. Haar-like features. The study also found that using the Otsu technique in
the pre-processing stage improves the detection rate. In a recent study, Tran et al. [93] proposed
to integrate cross-examples into a proposed scheme, which effectively improved the face detection
accuracy. Kowalski et al. [94] evaluated three common face detection algorithms, the Viola-Jones,
YOLO, and CNN. The deep learning network outperforms the Viola-Jones algorithm. Faster R-
CNN has better performance with a near-perfect detection rate and a low false detection rate.
Researchers presented the bioheat model, a special identification method, in [95], by creating
a thinned vascular network, similar to work done in [96]. Cho et al. [97] integrated Modified
Hausdorff Distance features to improve the precision performance implemented by [95].

Kopazka and his colleagues [98] have proven that a state-of-the-art machine learning algo-
rithm designated for visual images performs better than dedicated algorithms in detecting facial
in thermal imaging in terms of accuracy and false-positive rate. Five algorithms were selected;
Haar Cascade Viola-Jones, Haar Cascade classifier with local binary patterns (LBPs), Histograms
of Oriental Gradients (HOG), the Deformable Parts Model (DPM), and Pixel Intensity Com-
parisons Organized in Decision Trees (PICO) to compare with two algorithms; Eye Corner
Detection (ED) [99], Projection Profile Analysis (PPA) [100] dedicated for facial detection in
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thermal imaging. These comparative studies exposed the algorithms have a sensitivity towards a
change in pose and facial expression as it impacts the accuracy rate. VJ-LBP and HOG produce
good similar detection rates. DPM performs best in the detection and false-positive rates at the
cost of having the longest computation time. The authors recommend the PICO method performs
fast and produce better results. Kopaczka et al. [100,101] proposed one of the earliest works on
thermal facial landmark detection based on active appearance models [102]. The authors applied
PCA to landmark data and trained the AAM model based on dense HOG and SIFT features. Chu
et al. [103] tested a theory by applying an image transfer model by transferring a thermal image to
visible and used one of the landmark detectors designated for visual images. The result indicated
that the dedicated facial landmark detector need for thermal imaging. This leads the authors
to propose a thermal facial landmark detection based on deep multi-task learning. Kopaczka
et al. [101] suggested the face tracker method by using thermal videos and images based on AAM.
The study focused on strong landmarks to detect and track ROI within head pose and rotation.
Furthermore, the study proposed several enhancement algorithms such as sharp masking, USM
with bilateral filtering and USM with a Gaussian kernel. The study used several descriptors with
AAM like scale-invariant feature transform (SIFT) and Histogram Oriented Gradient (HOG) for
fitting the algorithm. The study also used Project-out inverse compositional, alternating inverse
compositional (IC) and Simultaneous Inverse compositional.

Sonkusare et al. [104] proposed a novel deep-learning assisted facial landmark to detect
method for the thermal image. This is to extract thermal signals from the facial regions. The
authors applied the sudden auditory stimulus of a loud stimulus to invoke the physiological
responses. The authors aimed to characterize the spatial changes in temperatures of different
facial regions i.e., nose-tip, right and left cheeks and forehead). The GSR and HR is selected
as bench marker. In this work, the authors compared two methods; (1) a task-constrained deep
convolutional network (TCDCN) and (2) an OpenPose detector. For method (1), the authors
implemented TCDCN which trained on RGB images and then fine-tune by further learning on
thermal images. Method (2) OpenPose detector is presented by [105] that employs a robust multi-
view bootstrapping architecture. Then this two methods are combined to improve the landmark
localization accuracy.

Several studies [90] demonstrated that face detection in the thermal image is possible without
being aided by a visual image. Researchers explored the artificial intelligence method. Mohd
et al. [59] suggested a BoCNN architecture framework to overcome one’ limitation, detect
occluded facial in a thermal image. A variety of CNN models proven to perform well in thermal
imaging [106–110]. Hong [45] proposed a multi-subject correlation [100] method to detect ROIs;
forehead, nose, and mouth in a thermal image.

2.3 Type of Stress Stimulus
There are many stresses stimulus widely used in literature; Stroop test, Trier Social Stress

Test (TSST) [55,62,74], arithmetical questionnaire [61,68,69,71], mock crime scenario setup [70]
and physical activities [55]. In [45], the participants were required to run on a treadmill to induce
physical stress as this study aimed to differentiate physical stress and baseline status. This study
achieves an accuracy rate of 90%.

2.4 Feature Extraction (Descriptors)
Thermal images, which have a distinct texture, appearance, and form than RGB images, play

a crucial role to identify human stress. Various forms of thermal descriptors have been used
in previous research. The effectiveness of facial features from the entire face or facial parts
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(ROI) is required in stress state identification. Numerous types of feature extraction are shown in
Tab. 3 of this survey. Based on Tab. 3, the majority of studies have used statistical features. For
example, He et al. [69] used maximum temperature, and mean. Derakhshan et al. [70] extracted
the six temporal features including mean, minimum, maximum, standard deviation, means of the
absolute values of the first and seconds’ derivatives of the pre-processed signals. Vasavi et al. [65]
calculated heart rate based on the mean value of the frame over time. The authors [64] extracted
the mean of the top 10% thermally hot pixels, minimum, maximum, and standard deviation.
The authors [71] calculated the mean value of emissivity and performed normalization by using
min-max normalization. In [61] the authors used the mean of the top 10% of the pixels. Cross
et al. [55] extracted average pixel value, maximum pixel value and the mean of the top 10% of the
pixels. Berlovskaya et al. [111] also extract the average value of the pixel and standard deviations.

Table 3: Literature work of human stress classification based on facial thermal signature

Author Descriptors Classifier Validation ROI Accuracy rate

[103] Maximum and
minimum
value
Mean
Power means
Standard
deviation
Mean of 10%
hottest pixel

Decision tree
classifier

Leave-one-subject-
out
validation

Whole face 73%

[55] Average pixel
value
Maximum
pixel value
Mean of the
10 hottest
pixel

LDA
SVM
NB
AAN

Four-fold cross
validation

Whole face LDA-100%
92.9%
NB 82.1
AAN 96.4

[61] Mean of the
10 hottest
pixel

Decision tress
Adaboost with
Random
Forest

10-fold cross
validation

Periorbital 76%

[73] Wavelet
transform

Hybrid of
DNN-1 and
DNN-2

- Whole face 96.3%

[71] Mean of heat
emissions

ResNet 5-fold
cross-validation
scheme

Forehead,
Periorbital,
Nose cheeks

88.3%

2.5 Facial Thermal Signature Correlation with Stress State
The researchers conducted several studies to establish the correlation between thermal features

with stress state of a human [74]. suggested that the individual stress state recognized by the
facial temperature is measurable with thermal imaging. Kan Hong and his colleagues [62] found a
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Pearson correlation value less than 1 between facial thermal signatures and known stress indicator
such as heart rate (HR) and cortisol level. In this study, the authors proposed new physiological
signal extraction; the Eulerian magnification algorithm, to amplify the physiological signals. This
study also shows the significant correlation between perinasal ROI and ground truth. A 96%
accuracy is achieved by the proposed algorithm compared to ground truth features.

The authors [64] applied the thermal imaging to classify the challenged participants among the
threatened participants. The findings show that features extracted from forehead and nose regions
yield better accuracy of stress detection. The stress classification based on individual features such
as forehead and the nose yields 80% accuracy. When the data from the forehead and nose are
combined, the accuracy improves even further. This research reveals insight temperature variations
in the facial region that can be used to identify different human emotional states.

The authors [71] studied the impact of psychophysical stimuli on facial thermal emissions. In
this study, the authors attempt to distinguish the facial pattern produced by physical activity and
mental stress. The findings show that thermal variation caused by psychological stimuli has more
changes in pixel intensity compared to the caused by physical stimuli. Reference [68] investigated
the impact of student cognitive load on the facial thermographic during knowledge assessment
test. The output of the study provides strong evidence to support the correlations between student
cognitive load and thermal changes. The authors agreed that thermal signature changes on facial
as criteria for stress detection.

Vasavi et al. [66] attempted to identify the most engaging feature for better stress detection
by applying regressing modelling. The findings support that the periorbital region is the most
engaging thermal feature for stress detection. Authors [112] investigated the correlation between
stress and topography of facial temperature changes over time. With Bonferroni-corrected pair-
wise comparisons, the correlation between induced stress state and the temperature changes in
forehead, cheeks and perioral is acknowledged. He et al. [69] justify the usefulness of using facial
temperature to evaluate mental stress. The authors also attempted to evaluate the effectiveness
of employing face temperature as a mental stress biomarker in comparison to other established
biomarkers; HRV, TLI, and PDM. The results established that the face temperature can provide
an accountable indicator for human stress recognition in a non-contact approach. Derakhshan
et al. [70] confirmed that perinasal and chin areas mostly correlated to stress state in studies. Hong
et al. [54] found that number of hot pixels increases in the periorbital region when participants
have induced physical stress. When participant experiences emotional stress, prefrontal region has
its pixel increases temperatures. This exhibits characteristics of the thermal distribution.

2.6 Stress Classification Based on Facial Skin Temperature Model
Researchers investigated the stress classification based on the extracted thermal signature of

the face. Tab. 2 provides the summary.

In [60], the authors experimented to detect human acute stress by integrating physiologi-
cal features and thermal features. The authors evaluate the performance of the chosen feature
individually and in combination. The performance of thermal features as individual features
achieves the highest accuracy of 73% as similar to the fusion of four physiological features, state-
of-the-art biomarkers of stress detection. These findings provide evidence to support that the
thermal features hold high accountability to measure stress remotely. The authors have suggested
a combination of the thermal and respiration rate features can improve the accuracy of stress
detection. This combination contributes 26% to improve accuracy. The decision tree classifier is
employed for stress classification and validated by the leave-one-subject-out-validation.
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Cross et al. [55] demonstrated that the system yields the highest accuracy in classifying
mental stress vs. physical stress. The features used are frequency analysis of the respiratory and
cardiovascular pulse. The authors extracted statistical descriptors, such as pixel value, maximum
value, and the mean of the 10% hottest pixel. The authors also compared four classifiers; AAN,
Naiye Bayes classifier, linear discriminant analysis, and SVM. The accuracy rate of classifications
is 96.4% (AAN), 100% (LDA), 92.9% (SVM), and 82.1% (NB). Each classifier is validated with
four-fold cross-validation. Among the four classifiers, LDA was found to perform better that
provides the high accuracy classification in a short time of computation. The authors claimed that
isolated face regions have the potential to improve classification accuracy.

Baltaci et al. [61] proposed a method to separate the stress state of a computer user. The
authors investigated the classification accuracy for each feature and fusion. The results show
that individually thermal features perform better with an accuracy of 76%, while individual
pupil features achieved 73% accuracy. The combined features of thermal and pupil achieved 83%
accuracy. Two classifiers were compared which are Adaboost with Random Forest outperform
Decision trees. 10-fold cross-validation is applied. The stress simulation used in this study revealed
limitation emotional that influences the result. The mean of the hottest pixel of the periorbital
region is used as descriptors in this study.

Derakhshan et al. [70] conducted an experiment to discriminate deception and truth by
comparing four machine learning techniques which SVM, KNN, LDA, and decision tree (DT).
This experiment aimed to improve the accuracy of thermal imaging and also to identify the ROIs
that can show significant results. From the perspective of physiology, deceptive anxiety leads to
spontaneous physiological signs including perspiration, increased heart rate, blood flow changes
and so on [70]. According to Cannon, this physiological reaction to acute stress is called the
“fight or flight” response [113]. The raw measurement obtained from thermal data is maximum
and minimum values. The six temporal features are extracted from these raw measurements: mean,
minimum, maximum, standard deviation, and means of absolute values of the first and second
derivatives of the signals. In this study, the authors carried two activities to trigger deceptive, mock
crime, and best friend scenarios. For mock crime scenarios, the classification accuracies of thermal
data, GSR, and PPG are 83.8%, 67.7% and 64.5%, respectively. Thermal data performs better.
While in best friend scenarios, accuracies for thermal data, GSR, and PPG are 62.9%, 66.6%, and
79.6%. Physiological signals show its discrimination property is stronger than thermal data. After
the feature reduction technique is applied, the accuracy of the thermal data jumps from 41% to
90%. The DT performs better than other models. LDA classifier achieves 905 accuracies after
feature reduction. The authors also compared the four thermal reduction methods: t-test, relative
entropy, ROC, and MWW. The result shows that ROC and MWW produce high accuracies and
the t-test shows improvement in other classifiers. The authors used the leave one out validation
method to get classifier accuracy. This study established that thermal features outperform gold
standard measurement and the accuracy can be improved with the feature reduction method. The
authors also found that perinasal and chin contributed to high accuracy classification with help
of the feature reduction method.

The authors [65] presented a framework to measure thermal signatures to detect cardio-
vascular and stress. In this study, the authors extracted thermal signatures such as card pulse,
stress responses (heart rate and heart rate variability), breath rate, and sudomotor responses. They
categorized the stress state based on rules. For stress responses, the carried two methods, the
first method uses FFT and the second method applied wavelet and FFT to calculate heart rate.
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The first method achieves 91% accuracy while the second method achieves 90.3%. The proposed
method performs better than the similar method proposed in [114].

Hong [45] proposed a contact-free model to detect the physical stress of the human body by
maximizing thermal signature in the facial region. After extract the ROIs by using the multi-object
correlation method, the stress signal was extracted, converted into an independent component by
the blind source separation (ICA) method and then amplified by Euclidean Magnification (EM)
algorithm. They applied the deep learning algorithm model to classify the baseline and physical
stress and achieve 90% accuracy. Before [45], the authors also conducted studies to detect stress
by analyzing facial temperature. They achieve 96% accuracy between the proposed EM algorithm
and ground truth that consists of the established stress markers. The authors magnified the stress
signal after preprocessed with the FFT algorithm.

In the recent years, very few studies explored the deep learning technique to produce better
high accuracy stress classification. Reshma [72] presented a hybrid deep learning network for stress
detection in the thermal image. Z-normalization based on the mean and standard deviation is
applied for better training. In this work, the authors combine two deep learning neural networks.
Raw image provided as input to first network DNN-1, and generate frequency features based
on wavelet transform technique. This frequency feature is given as input to the second network,
DNN-2. This hybrid system performance is compared with the machine learning technique. The
comparison shows the proposed system produces high accuracies, 96.2%. This system is also
compared with two transfer learning networks. The hybrid system outperforms these transfer
learning techniques, Alexnet and Vgg-16. Alexnet accuracy is 92%, Vgg-166 accuracy is 94.5 and
proposed system accuracy is 96.2%.

Kumar et al. [73] presented a novel deep learning-based methodology that explored the new
feature ISTI to detect stress in the thermal videos. This study also proposed emission representa-
tion modules that can be used to model variations in emitted radiation due to the motion of blood
and head movements. The authors explored the neural network based on facial skin temperature
and established evidence to introduce a new feature that has similar performance to the state-of-
the-art features. Biomarkers of Stress State (BOSS) and Cold Pressor test used to invoke stress.
Mean Squared Error (MSE) and Pearson’s correlation coefficient (R) were used to evaluate ISTI
prediction. The findings show that ISTI extracted by the proposed model have a high prediction
rate. Average precision (AP) as a validation metric is applied for stress detection. Predicted ISTI
signal is better in detecting stress state than HR (12% higher AP) and HRV (4% higher AP).
Also, higher AP with the ground truth ISTI signal confirms that ISTI is the most performing
index of stress state in the experiment. Panasiuk et al. [71] compared the numeral analysis and
deep learning method for stress state detection. Both techniques depend on heat emissions as a
feature. The proposed deep learning methods achieved a high classification accuracy of 88.21%.
The numerical analysis produces an accuracy of 76.40% and 78.10% for psychological and physical
tests.

Bara et al. [115] presented a preliminary approached based on deep learning towards multi
modal stress detection. The authors evaluated a different set of deep learning method. The multi-
modal used in this works are thermal video; RGB Closeup Video; RGB Wideangle Video; Audio;
the QA and monologues; Physiological signals: (1) heart rate, (2) body temperature, (3) skin
conductance, (4) breathing rate; and text: transcripts extracted from the QA. In this work, the
proposed architecture is based on Convolutional-Autoencoders and Recurrent Neural Networks.
The Gated Recurrent Unit (GRU) is used for implementation. The subject-based leave-one-out
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cross-validation is used for validation. Results demonstrated that the deep-learning methods can
generate rich state representations related to stress, regardless of relatively limited amount of data.

Gupta [116] proposed a stress detection method based on a deep learning technique. The
authors employed the deep learning model that consists of LSTM layer and a fully connected
layer. The output from fully connected layer is channeled into a softmax function for stress
prediction of a person. The authors used the 5-fold cross-validation to train the model. The results
show the average accuracy of classification by this model is 87%. Proposed model performs better
than similar accuracy produced in [117].

3 Discussion

Human stress detection is crucial in different disciplines. This paper discusses the approach
used in stress detection by using thermal imaging on facial skin temperature. The reason for
selecting the mentioned modality is to focus on contactless, physiological signals, and imaging-
based modalities. This paper has discussed the stages involved in stress detection such as face
detection in the thermal image, ROI localization, feature extraction, and stress classification.
Detecting an image in a thermal image is more complicated than a visual image. Sufficient research
has been done on detecting images in visual images more than thermal images. A solid state-of-
the-art face detection algorithm has been established compared to the thermal image, the simple
algorithm has been tailored to fit the gap. This becomes a major limitation in this stress detection
based on thermal. To overcome this limitation, the researchers have contributed in comparing
performance state-of-the-art face detection algorithm based on a visual image in a thermal image.
The outcome shows that the researchers can adapt a visual-based face detection algorithm for the
thermal image. The researchers also attempted to adopt deep learning techniques to detect the
face. These contributions ease the current limitation of stress detection based on thermal imaging.

This paper also highlights the thermal patterns from facial regions as an indicator to detect
stress. Thermal-based modalities have focused on the binary relationship between facial tempera-
ture and human stress state. Variation of thermal distribution patterns can be used to distinguish
different stress types such as emotional stress and physical stress. The paper reveals that many
studies have been done to prove the correlation between temperature changes in the face and the
stress state of a person. The stress classification accuracy performance of the thermal features
has been compared to the physiological biomarker such as heart rate, GSR, and HRV. These
physiological signals are considered as a state-of-the-art biomarker for stress detection through
the traditional method. The findings established that the thermal imaging technique is a good
candidate for detecting stress in a non-invasions manner. The study has the potential to be an
ideal experimental evaluation if a person wears a facial mask or relevant protection mode to fight
against the COVID-19 pandemic. Because protective gear covers a large portion of the face, the
periorbital region only has the potential to be used for feature extraction. More studies are needed
to investigate the ROI localization and feature extraction if a person wears a face shield where
the shield may hide the actual temperatures on the face.

However, the measurement of facial skin temperature by using low-cost equipment thermal
imaging to induce human stress state is not explored in previous literature. Major literature studies
have investigated the frontal face for stress detection and correlate it to the stress state. There are
insufficient studies to establish the relationship between side face and front face. Very few studies
are investigated the side face especially the neck side and ear to study the stress impact. More
studies are needed to cover this area. This investigation may lead to a discovery of ROI and an
established 3D thermal pattern model to study the stress impact in more detail.
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4 Future Work

Based on the discussion, several gaps are identified and this section is to propose the sug-
gestion to fill those gaps. The proposed future work for human stress recognition is based on
the thermal signature. Future studies should investigate the relationship between lateral faces
and frontal faces. Also, the proposed work should correlate with the stress level induced by an
individual. Future work should also consider novel methodologies to extract facial temperature
when a person wears a protective face shield. This study can be useful to detect stress among the
frontlines. A methodology that computes stress level and correlates it to the temperature changes
in a face is needed. This methodology would be useful for detecting stress levels in an individual
and can respond accordingly to the perceived stress level. The stress detection based on facial
expression in thermal images also is a potential research direction

5 Conclusion

This paper aimed to review the studies on stress detection based on thermal imaging. Many
studies that established the thermal feature can be useful for detecting stress remotely. The perfor-
mance of thermal features has been compared to the state-of-the-art physiological stress marker.
However, this methodology has its own limitations. Thus, more studies need to be conducted to
overcome the limitations. Based on the quantitative result comparison, it can be concluded that the
thermal features have full potential to detect stress. While face detection in thermal imaging limits
the thermal imaging in stress detection, the face temperatures changes provide stress information.
Further research is needed to determine the temperature changes on lateral sides of the face and
also to understand the relationship with the frontal face when a person induced stress.
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