Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31,589)
  • Open Access

    ARTICLE

    Federated Machine Learning Based Fetal Health Prediction Empowered with Bio-Signal Cardiotocography

    Muhammad Umar Nasir1, Omar Kassem Khalil2, Karamath Ateeq3, Bassam SaleemAllah Almogadwy4, Muhammad Adnan Khan5, Muhammad Hasnain Azam6, Khan Muhammad Adnan7,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3303-3321, 2024, DOI:10.32604/cmc.2024.048035 - 26 March 2024

    Abstract Cardiotocography measures the fetal heart rate in the fetus during pregnancy to ensure physical health because cardiotocography gives data about fetal heart rate and uterine shrinkages which is very beneficial to detect whether the fetus is normal or suspect or pathologic. Various cardiotocography measures infer wrongly and give wrong predictions because of human error. The traditional way of reading the cardiotocography measures is the time taken and belongs to numerous human errors as well. Fetal condition is very important to measure at numerous stages and give proper medications to the fetus for its well-being. In… More >

  • Open Access

    ARTICLE

    RL and AHP-Based Multi-Timescale Multi-Clock Source Time Synchronization for Distribution Power Internet of Things

    Jiangang Lu, Ruifeng Zhao*, Zhiwen Yu, Yue Dai, Kaiwen Zeng

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4453-4469, 2024, DOI:10.32604/cmc.2024.048020 - 26 March 2024

    Abstract Time synchronization (TS) is crucial for ensuring the secure and reliable functioning of the distribution power Internet of Things (IoT). Multi-clock source time synchronization (MTS) has significant advantages of high reliability and accuracy but still faces challenges such as optimization of the multi-clock source selection and the clock source weight calculation at different timescales, and the coupling of synchronization latency jitter and pulse phase difference. In this paper, the multi-timescale MTS model is conducted, and the reinforcement learning (RL) and analytic hierarchy process (AHP)-based multi-timescale MTS algorithm is designed to improve the weighted summation of More >

  • Open Access

    ARTICLE

    TSCND: Temporal Subsequence-Based Convolutional Network with Difference for Time Series Forecasting

    Haoran Huang, Weiting Chen*, Zheming Fan

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3665-3681, 2024, DOI:10.32604/cmc.2024.048008 - 26 March 2024

    Abstract Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution, causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem in time series has not been adequately solved. To address… More >

  • Open Access

    ARTICLE

    BSTFNet: An Encrypted Malicious Traffic Classification Method Integrating Global Semantic and Spatiotemporal Features

    Hong Huang1, Xingxing Zhang1,*, Ye Lu1, Ze Li1, Shaohua Zhou2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3929-3951, 2024, DOI:10.32604/cmc.2024.047918 - 26 March 2024

    Abstract While encryption technology safeguards the security of network communications, malicious traffic also uses encryption protocols to obscure its malicious behavior. To address the issues of traditional machine learning methods relying on expert experience and the insufficient representation capabilities of existing deep learning methods for encrypted malicious traffic, we propose an encrypted malicious traffic classification method that integrates global semantic features with local spatiotemporal features, called BERT-based Spatio-Temporal Features Network (BSTFNet). At the packet-level granularity, the model captures the global semantic features of packets through the attention mechanism of the Bidirectional Encoder Representations from Transformers (BERT)… More >

  • Open Access

    ARTICLE

    Secrecy Outage Probability Minimization in Wireless-Powered Communications Using an Improved Biogeography-Based Optimization-Inspired Recurrent Neural Network

    Mohammad Mehdi Sharifi Nevisi1, Elnaz Bashir2, Diego Martín3,*, Seyedkian Rezvanjou4, Farzaneh Shoushtari5, Ehsan Ghafourian2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3971-3991, 2024, DOI:10.32604/cmc.2024.047875 - 26 March 2024

    Abstract This paper focuses on wireless-powered communication systems, which are increasingly relevant in the Internet of Things (IoT) due to their ability to extend the operational lifetime of devices with limited energy. The main contribution of the paper is a novel approach to minimize the secrecy outage probability (SOP) in these systems. Minimizing SOP is crucial for maintaining the confidentiality and integrity of data, especially in situations where the transmission of sensitive data is critical. Our proposed method harnesses the power of an improved biogeography-based optimization (IBBO) to effectively train a recurrent neural network (RNN). The… More >

  • Open Access

    ARTICLE

    Enhancing Energy Efficiency with a Dynamic Trust Measurement Scheme in Power Distribution Network

    Yilei Wang1, Xin Sun1, Guiping Zheng2,3, Ahmar Rashid4, Sami Ullah5, Hisham Alasmary6, Muhammad Waqas7,8,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3909-3927, 2024, DOI:10.32604/cmc.2024.047767 - 26 March 2024

    Abstract The application of Intelligent Internet of Things (IIoT) in constructing distribution station areas strongly supports platform transformation, upgrade, and intelligent integration. The sensing layer of IIoT comprises the edge convergence layer and the end sensing layer, with the former using intelligent fusion terminals for real-time data collection and processing. However, the influx of multiple low-voltage in the smart grid raises higher demands for the performance, energy efficiency, and response speed of the substation fusion terminals. Simultaneously, it brings significant security risks to the entire distribution substation, posing a major challenge to the smart grid. In… More >

  • Open Access

    ARTICLE

    An Enhanced Ensemble-Based Long Short-Term Memory Approach for Traffic Volume Prediction

    Duy Quang Tran1, Huy Q. Tran2,*, Minh Van Nguyen3

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3585-3602, 2024, DOI:10.32604/cmc.2024.047760 - 26 March 2024

    Abstract With the advancement of artificial intelligence, traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality. Traffic volume is an influential parameter for planning and operating traffic structures. This study proposed an improved ensemble-based deep learning method to solve traffic volume prediction problems. A set of optimal hyperparameters is also applied for the suggested approach to improve the performance of the learning process. The fusion of these methodologies aims to harness ensemble empirical mode decomposition’s capacity to discern complex traffic patterns and long short-term memory’s proficiency in learning temporal… More >

  • Open Access

    ARTICLE

    Chaotic Map-Based Authentication and Key Agreement Protocol with Low-Latency for Metasystem

    Guojun Wang1,2, Qi Liu3,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4471-4488, 2024, DOI:10.32604/cmc.2024.047669 - 26 March 2024

    Abstract With the rapid advancement in exploring perceptual interactions and digital twins, metaverse technology has emerged to transcend the constraints of space-time and reality, facilitating remote AI-based collaboration. In this dynamic metasystem environment, frequent information exchanges necessitate robust security measures, with Authentication and Key Agreement (AKA) serving as the primary line of defense to ensure communication security. However, traditional AKA protocols fall short in meeting the low-latency requirements essential for synchronous interactions within the metaverse. To address this challenge and enable nearly latency-free interactions, a novel low-latency AKA protocol based on chaotic maps is proposed. This… More >

  • Open Access

    ARTICLE

    Improving Thyroid Disorder Diagnosis via Ensemble Stacking and Bidirectional Feature Selection

    Muhammad Armghan Latif1, Zohaib Mushtaq2, Saad Arif3, Sara Rehman4, Muhammad Farrukh Qureshi5, Nagwan Abdel Samee6, Maali Alabdulhafith6,*, Yeong Hyeon Gu7, Mohammed A. Al-masni7

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4225-4241, 2024, DOI:10.32604/cmc.2024.047621 - 26 March 2024

    Abstract Thyroid disorders represent a significant global health challenge with hypothyroidism and hyperthyroidism as two common conditions arising from dysfunction in the thyroid gland. Accurate and timely diagnosis of these disorders is crucial for effective treatment and patient care. This research introduces a comprehensive approach to improve the accuracy of thyroid disorder diagnosis through the integration of ensemble stacking and advanced feature selection techniques. Sequential forward feature selection, sequential backward feature elimination, and bidirectional feature elimination are investigated in this study. In ensemble learning, random forest, adaptive boosting, and bagging classifiers are employed. The effectiveness of… More >

  • Open Access

    ARTICLE

    Falcon Optimization Algorithm-Based Energy Efficient Communication Protocol for Cluster-Based Vehicular Networks

    Youseef Alotaibi1, B. Rajasekar2, R. Jayalakshmi3, Surendran Rajendran4,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4243-4262, 2024, DOI:10.32604/cmc.2024.047608 - 26 March 2024

    Abstract Rapid development in Information Technology (IT) has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle (V2V) transmission. Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data. The communication occurs directly between V2V and Base Station (BS) units such as the Road Side Unit (RSU), named as a Vehicle to Infrastructure (V2I). However, the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time. Therefore, the scheme of an effectual routing protocol for reliable and stable communications… More >

Displaying 6691-6700 on page 670 of 31589. Per Page