Advanced Search
Displaying 1-10 on page 1 of 350. Per Page  
  • Axial Mechanical Properties of Timber Columns Subjected to Freeze-Thaw Cycles
  • Abstract The behaviour of timber columns subjected to freeze-thaw cycles under axial compression is presented in this paper. A total of forty specimens, including twenty circular timber columns and twenty square timber columns, were tested under axial compression. The failure modes, ultimate bearing capacity, ductility coefficient, load-displacement curves and load-strain curves were obtained and analyzed. The number of freeze-thaw cycles (from 0 to 80) and the specimens’ height (from 225 mm to 360 mm) were considered as the main parameters. After freeze-thaw cycles, there was no obvious change on the surface of the timber columns. The test results showed that freeze-thaw…
  • More
  •   Views:51       Downloads:38        Download PDF
  • Component Optimization and Seepage Simulation Method of Resin Based Permeable Brick
  • Abstract In order to solve the problem of urban surface runoff, it is necessary to study permeable brick deeply. Tensile test and DMA test were used to study the binder material of permeable brick, and a material with the best mechanical properties was selected as the binder of resin based permeable brick; The permeable brick with single gradation and continuous gradation and porosity of 0.1–0.5 gradient is constructed by 3D modeling method. The particle composition and the seepage simulation results of permeable brick under different design parameters were analyzed; A resin-based permeable brick with micro-pores was prepared using the selected binder…
  • More
  •   Views:32       Downloads:20        Download PDF
  • Low Temperature H2 Production from Formic Acid Aqueous Solution Catalyzed on Metal Doped Mo2C
  • Abstract Hydrogen is recognized as a promising energy scours in the close future. Online hydrogen preparation from formic acid under mild reaction conditions causes extensive interests. Mo2C and metal (Fe, Ni, Co, K) doped Mo2C on granular activated carbon (GAC) were prepared and used as heterogeneous catalysts for H2 generation from formic acid on a fixed bed reactor at 100–250°C. The formic acid conversions on doped Mo2C-Me/GAC are clearly improved, especially at lower reaction temperatures. Co doping presents outstanding effect on H2 selectivity and conversion rate compared to Ni and Fe. A 56.3% formic acid conversion was reached on Mo2C-Co/GAC at…
  • More
  •   Views:33       Downloads:17        Download PDF
  • Interfacial Modification of Corn Stalk Cellulose Reinforced Used Rubber Powder Composites Treated with Coupling Agent
  • Abstract Corn stalk cellulose (CS)/used rubber powder (RP) composites were prepared by mixing, the silane coupling agent 3-Mercaptopropyl trimethoxysilane (KH590), r-Aminopropyltrieth oxysilane (KH550), isopropyl dioleic (dioctylphosphate) titanate (HY101) and bis-(γ-triethoxysilylpropyl)- tetrasulfide (Si69) were used to modify the interface of composites. The effects of the CS and coupling agents on the mechanical properties, thermal properties, interfacial morphology and structure of the composites were investigated, respectively. The results showed that the addition of CS could effectively improve the mechanical properties of the composites. Compared with the untreated composites, the interfacial bonding between CS and RP was significantly improved by the coupling modifi- cation…
  • More
  •   Views:33       Downloads:20        Download PDF
  • Mechanical Properties of Sea Water Sea Sand Coral Concrete Modified with Different Cement and Fiber Types
  • Abstract The mechanical properties of modified sea water sea sand coral concrete (SWSSCC) under axial compression were experimentally studied. Two different parameters were considered in this test: types of cement and fiber. An experimental campaign was developed involving uniaxial compression tests and the use of digital image correlation (DIC) method to analyze the strain distribution and crack propagation of specimen. Test results indicated that the compressive strength and elastic modulus of SWSSCC were improved by adding stainless steel fibers (SSF), while polypropylene fibers (PF) enhanced the SWSSCC peak deformation. It was found that the elastic modulus and strength of SWSSCC using…
  • More
  •   Views:38       Downloads:20        Download PDF
  • Study of the Superficial Modification of Sisal Fibres with Lignin, and Its Use As a Reinforcement Agent in Cementitious Composites
  • Abstract The objective of this work was to evaluate different superficial treatments of sisal fibres employing lignin, and their use as a reinforcement agent in cementitious composites. The treatments consisted of superficially impregnating sisal fibres (S) with organosolv lignin (LO), organosolv lignin and glutaraldehyde (LOG), Kraft lignin (LK) and Kraft lignin and glutaraldehyde (LKG). The fibre modifications were verified by FTIR-ATR and SEM analyzes, and the presence of lignin on the surface of the fibres was evidenced, confirming the effectiveness of the treatments. The mechanical, thermal (by TGA) and water absorption properties of the fibres before and after the modifications were…
  • More
  •   Views:38       Downloads:20        Download PDF
  • Decorative Wood Fiber/High-Density Polyethylene Composite with Canvas or Polyester Fabric
  • Abstract Wood-plastic composite is an environmentally friendly material, due to its use of recycled thermoplastics and plant fibers. However, its surface lacks attractive aesthetic qualities. In this paper, a method of decorating wood fiber/ high-density polyethylene (WF/HDPE) without adding adhesive was explored. Canvas or polyester fabrics were selected as the surface decoration materials. The influence of hot-pressing temperature and WF/HDPE ratio on the adhesion was studied. The surface bonding strength, water resistance, and surface color were evaluated, and observation within the infrared spectrum and under scanning electron microscopy was used to analyze the bonding process. The results showed that the fabric…
  • More
  •   Views:32       Downloads:19        Download PDF
  • Docking and Molecular Dynamics Study of the Carbohydrate Binding Module from Trichoderma reesei Cel7A on the Surfaces of the Cellulose IIII Crystal
  • Abstract We report the systematic survey of the binding free energies at the interface between a carbohydrate binding module (CBM) of Cel7A and the cellulose IIII crystal model using grid docking searches and molecular dynamics simulations. The two hydrophobic crystal surfaces were involved in the distinct energy minima of the binding free energy. The complex models, each with the CBM at the minimum energy position, stably formed in the solution state. The binding free energies of the cellulose IIII complex models, based on both static and dynamics states, were comparable to those of the native cellulose complex models. However, the cellulose…
  • More
  •   Views:30       Downloads:19        Download PDF
  • On Designing Biopolymer-Bound Soil Composites (BSC) for Peak Compressive Strength
  • Abstract Biopolymer-bound Soil Composites (BSC), are a novel bio-based construction material class, produced through the mixture and desiccation of biopolymers with inorganic aggregates with applications in soil stabilization, brick creation and in situ construction on Earth and space. This paper introduces a mixture design methodology to produce maximum strength for a given soil-biopolymer combination. Twenty protein and sand mix designs were investigated, with varying amounts of biopolymer solution and compaction regimes during manufacture. The ultimate compressive strength, density, and shrinkage of BSC samples are reported. It is observed that the compressive strength of BSC materials increases proportional to tighter particle packing…
  • More
  •   Views:46       Downloads:31        Download PDF
  • The Effect of Fibre Length on Flexural and Dynamic Mechanical Properties of Pineapple Leaf Fibre Composites
  • Abstract The present paper deals with the effect of loading different pineapple leaf fibre (PALF) length (short, mixed and long fibres) and their reinforcement for the fabrication of vinyl ester (VE) composites. Performance of PALF/VE composites was investigated through three-point bending flexural testing and viscoelastic (dynamic) mechanical properties through dynamic mechanical analysis (DMA). DMA results revealed that the long PALF/VE composites displayed better mechanical, damping factor and dynamic properties as compared to the short and mixed PALF/VE composites. The flexural strength and modulus of long PALF/VE composites were 113.5 MPa and 14.3 GPa, respectively. The storage (E′) and loss (E″) moduli…
  • More
  •   Views:553       Downloads:394        Download PDF
Displaying 1-10 on page 1 of 350. Per Page