Special Issue "Nanocellulose and Nanocellulose-Derived Functional Materials"

Submission Deadline: 30 December 2020
Submit to Special Issue
Guest Editors
Haipeng Yu, Professor, Northeast Forestry University, China.
Dr. Haipeng Yu is a full professor and head of Key laboratory of Wood Science and Engineering of State Forestry Administration, Northeast Forestry University (China). He graduated and received his Ph.D. from Northeast Forestry University. He started as an assistant professor at Northeast Forestry University in 2005, and was promoted to associate professor and professor in 2007 and 2011. His research interests are focused on wood-based renewable materials and composites, nanocellulose and its nanocomposites. Special attention is dedicated to biomass refinery via green solvents & technologies.
Yan Yu, Professor, Fujian Agriculture and Forestry University, China.
Dr. Yan Yu received his Bachelor of Engineering in 1997 from Central South Forestry University, China. He got master degree in Wood Science from Beijing Forestry University in 2000 and finally received his Ph.D from Chinese Academy of Forestry in 2003 for his work in wood cell wall mechanics. Since then he worked for International Center for Bamboo and Rattan, China and was promoted to be a professor in 2012. He joined Fujian Agriculture and Forestry University in 2019 as a full-time professor. His research interests focus on cell wall structure-properties relationship, advanced wood based functional materials and bamboo derived nanocellulose.
Kojiro Uetani, Assistant Professor, Osaka University, Japan.
Dr. Kojiro Uetani received his Bachelor of Agriculture in 2008 from Kyoto University, Japan. He remained at Kyoto University for his graduate studies, receiving his Ph.D. in 2013 for his work in nanocellulose production and structural analysis. Following postdoctoral appointments at Technology Research Association for Single Wall Carbon Nanotubes (TASC), Ibaraki, Japan, he accepted a position as Assistant Professor of College of Science at Rikkyo University, Tokyo in 2014. He moved to Osaka University in 2018 and he is currently an Assistant Professor in the Institute of Scientific and Industrial Research (ISIR), Osaka. His research interests focus on the potential of nanocelluloses in analyzing bio-tissues and developing advanced materials with thermally conductive, optical birefringence, and high-performance mechanical properties.
Wenshuai Chen, Professor, Northeast Forestry University, China.
Dr. Wenshuai Chen received his BS degree (2008) and PhD degree (2013) in wood science and technology from Northeast Forestry University, China. Now he is a professor at Northeast Forestry University. His research interests include wood physics, bionanocomposites, nanocellulose, aerogels, and development of natural nanomaterials for energy storage and conversion as well as water purification.


Nanocellulose is a novel type of cellulose nanomaterials that mainly synthesized by trees, cotton, or other higher plants. Owing to the intrinsic nanofiber structure and the advantageous mechanical, thermal, and optical properties, nanocellulose has become a star nanomaterial in recent material science field. Various nanofibrillaltion, modification and assemble strategies were developed for extracting nanocellulose from renewable materials, adjusting the nanocellulose surface physical/chemistry properties, and constructing advanced functional materials/devices. The Special Issue "Nanocellulose and Nanocellulose-Derived Functional Materials" covers research in fundamental and applied science of nanocellulose research. It focuses on recent progress and research studies of nanocellulose related to nanocellulose fabrication, nanocellulose modification, nanocellulose-derived functional materials and the application of nanocellulose and nanocellulose-derived materials in various fields. The scope of interests includes but is not limited to the following topics:
● Nanocellulose fabrication
● Nanocellulose smulation and characterization
● Nanocellulose modification
● Nanocellulose-derived films/nanopapers
● Nanocellulose-derived foams/aerogels
● Application of nanocellulose-derived materials

Nanocellulose; Nanofibrillated cellulose; Cellulose nanocrystals; Bacterial cellulose; Modification; Nanopapers; Aerogels

Published Papers

  • Preparation of Dicarboxyl Cellulose Nanocrystals from Agricultural Wastes by Sequential Periodate-Chlorite Oxidation
  • Abstract Agricultural waste straw is the renewable resource with the highest annual yield in the world. In value-added applications of agricultural waste, dicarboxyl cellulose nanocrystals (DCCs) are prepared from rice, wheat, and corn straw by sequential periodate-chlorite oxidation. In this study, DCCs from rice, wheat, and corn straw were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectrometer, X-ray diffractometer (XRD), and thermal gravimetric analysis (TGA). The carboxyl content of the DCCs was also investigated. XRD results show that the crystallinity index decreased after sequential periodate-chlorite oxidation; however, the cellulose I structure was maintained. TEM results show that rod-shaped DCCs… More
  •   Views:879       Downloads:369        Download PDF

  • Rapid Microwave-Assisted Ionothermal Dissolution of Cellulose and Its Regeneration Properties
  • Abstract Introduction of the strategy of anhydrous calcium carbonate protection incorporated with the drop by drop reaction, high-purity 1-butyl-3-methylimidazolium chloride ([Bmim] Cl) was prepared at reaction temperature of 80°C for only 10 h. Cellulose samples from different biomass sources (with different degree of polymerization characteristic) could be rapidly (no more than 10 minutes) and completely dissolved in the [Bmim] Cl using a microwave-assisted ionothermal route. Homogeneous cellulosic regenerates with high degree of polymerization and thermal stability characteristics were obtained through a coagulation process in water. Furthermore, the dissolved celluloses were readily regenerated into solid products such as casting films and spinning… More
  •   Views:510       Downloads:407        Download PDF