Multidomain Formulation of BEM Analysis Applied to Large-Scale Polycrystalline Materials
A. F. Galvis, R. Q. Rodriguez, P. Sollero and E. L. Alburquerque

doi:10.3970/cmes.2013.096.103
Source CMES: Computer Modeling in Engineering & Sciences, Vol. 96, No. 2, pp. 103-115, 2013
Download Full length paper in PDF format. Size =1,241,515 bytes
Keywords Multidomain Boundary Element Method, Polycrystalline Materials.
Abstract

Polycrystalline structures are present on metal alloys. Therefore, it is necessary to understand and model the mechanical behavior of this media. Usually, this is accomplished by the use of different numerical methods. However, the analysis of polycrystalline materials leads to other type of problems, such as high computational requirements generated in order to get an efficient solution. In this work, the 2D polycrystalline structure is generated using an average grain size through the Voronoi tessellation method and discretized through simulations with random material, crystalline orientation and orthotropic behavior [Sfantos and Aliabadi (2007a)]. BEM discretization requires multidomain analysis and large-scale degrees of freedom [Katsikadelis (2002);Kane (1994)]. This technique demands a different strategy in order to get a faster response. Numerical examples were carried out to demonstrate the feasibility of the application of the method to largescale polycrystalline problems. Results were compared with the conventional BEM solution for several set of loads. The analysis of the structure is performed using the proposed anisotropic multidomain BEM formulation [Katsikadelis (2002);Kane (1994)].

PDF download PDF