Open Access
ARTICLE
Multi-Point Shape Optimization of Airfoils at Low Reynolds Numbers
Dept. of Aerospace Engineering, IIT Kanpur, 208016, India
Summer Intern,Dept. of Aerospace Engineering, IIT Kanpur, 208016, India
Computer Modeling in Engineering & Sciences 2009, 51(2), 169-190. https://doi.org/10.3970/cmes.2009.051.169
Abstract
A continuous adjoint method is formulated and implemented for the multi-point shape optimization of airfoils at low Re. The airfoil shape is parametrized with a non-uniform rational B-Spline (NURBS). Optimization studies are carried out for two different objective functions. The first involves an inverse function on the lift coefficient over a range of Re. The objective is to determine a shape that results in a lift coefficient of 0.4 at three values of Re: 10, 100 and 500. The second objective involves a direct function on the lift coefficient over a range of angles of attack,a. The lift coefficient is maximized simultaneously fora= 4o, 8oand 12owhile the Re is held constant. The final shapes from both the cases are compared with those from the single-point optimization at each of the operating point. It is seen that the multi-point shapes are significantly different. They also have a better off-design performance than the geometries from single-point designs.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.