Thermal Analysis of Reissner-Mindlin Shallow Shells with FGM Properties by the MLPG
J. Sladek; V. Sladek; P. Solek; P.H. Wen; and S.N. Atluri

doi:10.3970/cmes.2008.030.077
Source CMES: Computer Modeling in Engineering & Sciences, Vol. 30, No. 2, pp. 77-98, 2008
Download Full length paper in PDF format. Size = 300,216 bytes
Keywords Meshless local Petrov-Galerkin method (MLPG), Moving least-squares (MLS) approximation, functionally graded materials, thermal load
Abstract A meshless local Petrov-Galerkin (MLPG) method is applied to solve problems of Reissner-Mindlin shells under thermal loading. Both stationary and thermal shock loads are analyzed here. Functionally graded materials with a continuous variation of properties in the shell thickness direction are considered here. A weak formulation for the set of governing equations in the Reissner-Mindlin theory is transformed into local integral equations on local subdomains in the base plane of the shell by using a unit test function. Nodal points are randomly spread on the surface of the plate and each node is surrounded by a circular subdomain to which local integral equations are applied. The meshless approximation based on the Moving Least-Squares (MLS) method is employed for the implementation.
PDF download PDF