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The Optimal Radius of the Support of Radial Weights Used in Moving Least
Squares Approximation

Y.F. Nie1,2, S.N. Atluri2 and C.W. Zuo1

Abstract: Owing to the meshless and local character-
istics, moving least squares (MLS) methods have been
used extensively to approximate the unknown function of
partial differential equation initial boundary value prob-
lem. In this paper, based on matrix analysis, a sufficient
and necessary condition for the existence of inverse of
coefficient matrix used in MLS methods is developed
firstly. Then in the light of approximate theory, a prac-
tical mathematics model is posed to obtain the optimal
radius of support of radial weights used in MLS meth-
ods. As an example, while uniform distributed particles
and the 4th order spline weight function are adopted in
MLS method in two dimension domain and two kinds of
norms are used to measure error, optimal results for lin-
ear and quadratic basis are gained. Finally, the test data
verify that the optimal values are correct. The research
idea can be used in 3-dimension problems too.

keyword: MLS methods, Radius of support, Scaling,
Sobolev norm, Mathematics model, Matrix analysis, Ap-
proximate theory.

1 Introduction

Comparing with the radial basis function interpolation
approach, the moving least squares (MLS) method offers
another kind of efficient scattered data approximation es-
pecially if the number of point is large and the data val-
ues contain noise. The MLS method is a variation on the
classical least squares technique with the advantage al-
lowing the nearest neighbors of the evaluation point x to
influence the approximate value through a weight func-
tion with local compact support w(x, x j) : Rd ×Rd → R+

where x jis one of the given particles (nodes) in set PΩ =
{x j}n

j=1in the bounded domain Ω ⊂ Rd. That is for every
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point x we have to solve the following problem

min
s∈S

{
n

∑
j=1

[s(x j)− f j] 2w(x,x j)

}
, (1)

where S is a finite-dimensional linear space and f j =
f (x j) is the collected data. Weight function w(x,x j) with
the form w0

(∥∥x−x j

∥∥
2

/
r j
)

is generally used to simplify
the form of weight function and help forward the inde-
pendence of weight function on the dimension d of the
domain Ω. As function w0(r)has a compact support [0,
1], weight function w(x,x j)has a disc support with center
x j and radius r j. In this paper, we would like to take the
radius as a constant r for simplicity.

The MLS approximation has its origin in the early pa-
per [Lancaster and Salkauskas(1981)] with special cases
going back to [McLain(1974),and Shepard(1968)], and
some investigation about the approximation order is
given in paper [Farwig(1986)]. Now MLS methods have
emerged as the basis of numerous meshless (meshfree)
approximation methods that being suggested as an al-
ternative to the traditional finite element method in ref-
erences [Atluri (2004),and Babuska, Banerjee and Os-
born(2003), Liu, Han and Lu (2004)] and there referred.
Especially, the generalized moving least squares methods
is developed and successfully applied as a approxima-
tion methods to solve thin beam problem in paper [Atluri,
Cho, Kim(1999)].

As we know, one of the crucial steps to solve partial dif-
ferent equations system is the approximation to the un-
known field function appeared in the system, i.e. how
to ensure trial function being an effective approximation.
The influence factors existing in MLS method include
which kind of weight function w0 should be used and
how much the size of compact support of the weight
function r should be. Reference [Atluri (2004)] suggests
to use 4th order spline type weight function in order to
give smoothness to the derivatives of the trail function.
About the second factor there is no definite answer up to
now as our known.
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In this paper, after a brief introduction of the MLS ap-
proximation in this section, a sufficient and necessary
condition about the existence of the inverse of coefficient
matrix of linear equations system used in MLS method
is posed and proved when uniform distributed particle is
exploited in section 2. The conclusions about the applica-
tion in the case of linear and quadratic basis are specified
in section 3. Then the model of optimal radius of the sup-
port of radial weight function is developed and solved in
section 4 and 5 respectively. Some numerical tests about
the optimal radius when linear bases and quadrics base
being used are given in section 6. And the conclusions
are shown in the end.

2 Sufficient and necessary

Let’s assume that the finite dimension of linear space S
used in formula (1) is expressed as

S = span{p1(x), p2(x), · · · , pm(x)} ,

i.e. a series of linear independent functions
p1(x), p2(x), · · · , pm(x) defined on Rd are the basis
of linear space S, and for any s ∈ S there exist a group of

coefficients {ai}m
i=1 ⊂ R such that s =

m
∑

i=1
aipi(x) . Then

for any given point x ∈ Ω ⊂ Rd, the moving least squares
problem (1) can be writen as

Find s∗ =
m
∑

i=1
ai(x)pi(x) such that

min
s∈S

{
n

∑
j=1

[ s(x j)− f j] 2w(x,x j)

}

= min
ai ∈ R

1 ≤ i ≤ m

⎧⎨
⎩

n

∑
j=1

[
m

∑
i=1

aipi(x j)− f j

]2

w(x,x j)

⎫⎬
⎭

=
n

∑
j=1

[
m

∑
i=1

ai(x)pi(x j)− f j

]2

w(x,x j). (2)

According to least squares principle, for any point x ∈
Ω ⊂ Rd, the coefficients {ai(x)}m

i=1 ⊂ R of the solution
function s∗ should be the solution of the following linear
equations system

A(x)a(x) = B(x)u, (3)

where matrix

A(x) = PT W(x)P, B(x) = PT W(x),
W(x) = diag{w(x,x1), w(x,x2), . . . , w(x,xn)}, (4)

P =

⎡
⎢⎢⎢⎣

p1(x1)p2(x1) . . . pm(x1)
p1(x2)p2(x2) · · · pm(x2)

· · · · · · . . . · · ·
p1(xn)p2(xn) · · · pm(xn)

⎤
⎥⎥⎥⎦ ,

a(x) =

⎡
⎢⎢⎢⎣

a1(x)
a2(x)
...
am(x)

⎤
⎥⎥⎥⎦ ,

u =

⎡
⎢⎢⎢⎣

f1

f2
...
fn

⎤
⎥⎥⎥⎦ . (5)

In order to describe the solvability of the linear equations
system (3) clearly, we need introduce the following defi-
nition as in reference [Zuo and Nie(2005)].

Definition 1 Assuming that we have functions series
{ϕi(x)}m

i=1 and particles set X = {x j}n
j=1, {ϕi(x)}m

i=1 is
said to be linear independent on the set X if equations
m
∑

i=1
ciϕi(x j)= 0 (1≤ j ≤ n) lead to c1 = c2 = · · ·= cm =

0.

Remark 2 According to the definition, obviously the
functions series {ϕi(x)}m

i=1 is linear independent on the
set X if and only if the rank of the matrix ΦΦΦ is m. The
matrix ΦΦΦ is defined as

ΦΦΦ =

⎡
⎢⎢⎢⎣

ϕ1(x1)ϕ2(x1) . . .ϕm(x1)
ϕ1(x2)ϕ2(x2) · · ·ϕm(x2)

· · · · · · . . . · · ·
ϕ1(xn)ϕ2(xn) · · ·ϕm(xn)

⎤
⎥⎥⎥⎦ .

In other words, the column vectors of matrix Φ are linear
independent. The geometric explanation is that there is
a group of particles {xi j}m

j=1 ⊂ X such that they do not
locate in any same curve expressed by a function in space
span{ϕ1(x),ϕ2(x), · · · ,ϕm(x)}.

Now, let us come back to the MLS approximation. For
a fixed x ∈ Ω, suppose that there are number of k parti-

cles, {xi1,xi2, · · · ,xik} ∆=Px ⊂ PΩ, which satisfy condition
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weight w(x,xl) > 0 for any xl ∈ Px in contrast with weight
w(x,xl) = 0 for xl ∈ PΩ\Px. Reference [Atluri (2004)]
calls Px as the influence domain of point x based on given
particles set PΩ.

Take a permutation matrix Tx which can be used to real-
ize the following transformation

TxW(x)TT
x =

[
W11(x) O12

O21 O22

]
, (6)

where matrix

W11(x) = diag{w(x,xi1),w(x,xi2), · · · ,w(x,xik)},

and the sizes of the zero matrixes O12, O21, O22 are
k × (n− k), (n− k)× k, (n− k)× (n− k) respectively.
Using the characteristic of permutation matrix, we have
the alternative form of coefficient matrix of linear equa-
tions system (3) as follows

A(x) = PT W(x)P = PT TT
x TxW(x)TT

x TxP

= (TxP)T TxW(x)TT
x (TxP) (7)

Let’s dispart the matrix (TxP)n×m into two parts, as fol-
lows

TxP =
(

P1

P2

)
(8)

where matrix P2 has the size of (n− k)×m and matrix
P1 has the form

P1 =

⎡
⎢⎢⎢⎣

p1(xi1)p2(xi1) . . .pm(xi1)
p1(xi2)p2(xi2) · · ·pm(xi2)

· · · · · · . . . · · ·
p1(xik)p2(xik) · · · pm(xik)

⎤
⎥⎥⎥⎦

k×m

(9)

Substitute formulas (6) and (8) into (7), and we obtain
that coefficient matrix

A(x) =
(

P1

P2

)T [
W11(x) O12

O21 O22

] (
P1

P2

)
= PT

1 W11(x)P1 . (10)

Due to diagonal matrix W11(x) being positive symmetry,
det(A(x)) �= 0 if and only if rank(P1) = m. Using the
Remark 2 and Definition 1, that is to say functions series
{pi(x)}m

i=1 should be linear independent on the influence

domain Px = {xi1,xi2, · · · ,xik}. Conclude this into the fol-
lowing theorem.

Theorem 3 For any x ∈ Ω, the linear equation sys-
tem derived from moving least squares approximation
exist unique solution if and only if the base functions
{pi(x)}m

i=1 is linear independent on the influence domain
Px of point x based on the given particles set PΩ.

Remark 4 The expression (10) of coefficient matrix A(x)
show us that the coefficient matrix of MLS method is
positive symmetry under the condition of Theorem 3.
And the characteristic leads that much more methods can
be used to solve equations system (3).

Remark 5 The theorem is correct for any kind of weight
function, random distributed particles, and any dimen-
sion of any shape of domain Ω used in the MLS approx-
imation.

Remark 6 To ensure basis {pi(x)}m
i=1 of linear space S

being linear independence on the influence domain Px of
any point x ∈ Ω, all of the radius r j (1 ≤ j ≤ n)of the
compact support of weight function W(x,x j) must large
enough such that Px can contain number of m particles at
least. That is to say for any point x ∈ Ω there are number
of k ≥ m = dim(S) supports of weight functions which
cover the point x, and among of the k centers of the sup-
ports, there are m center at least which do not locate on
any curve defined by a function in space S.

Although satisfying the condition of the Theorem 3 en-
sures that the MLS method has unique analysis solution,
it does not tell us what the best radius of the compact
support of weight function should be to obtain a good
approximation. This problem will be discussed in the
following several sections.

3 Application to linear and quadric basis

Now we use the previous theory to the case of the linear
space S with linear and quadric basis respectively and
assuming that the particles PΩ = {x j}n

j=1 are distributed
uniformly on the bounded convex domain Ω ⊂ R2 with
particles step h, namely the distance along the coordinate
axis between the adjacent particles.

In the case of linear basis, we have linear space S =
span{1,x,y} and m = dim(S) = 3. According to The-
orem 3 and Remark 6, the influence domain Px for any
point x ∈ Ω must include at least 3 particles not shar-
ing any same straight line, then the MLS method can
be used to evaluate the approximation of the unknown
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function at point x. As the particles is distributed like
Fig. 1, and weight functions take the form of w(x,x j) =
w0
(∥∥x−x j

∥∥
2

/
r
)
, the support radius r of the support

should be greater than
√

5
/

2h ≈ 1.11803h, which can

be obtain by sampling several special point x along the
domain boundary ∂Ω only because the interior point x
has more particles included in its influence domain .

In the case of quadratic basis, linear space S =
span{1,x,y,x2,xy,y2} and the dimension m = dim(S) =
6. Similarly discussion as in the linear case, we know that
the influence domain Px must include 6 particles not shar-
ing any quadratic curve (two lines regards as a special
quadratic curve), and further the support radius r should
be greater than

√
17
/

2h ≈ 2.0616h.

Remark 7 Although the previous conditions about the
radius of support can ensure the matrix inversion of the
MLS approximation possible, a little larger support ra-
dius than the previous mentioned is needed to reduce
the condition number of the coefficient matrix. Through
computing simulation, reference [Zuo and Nie (2005)]

suggests that r ≥ 1.2h >
√

5
/

2h for linear basis and

r ≥ 2.5h >
√

17
/

2h for quadratic basis. We will search
the best support radius based on a model in the coming
section.

      

(a) linear basis        (b) quadratic basis 

Figure 1 : The positions where the minimum radius of
influence domain needed by MLS method. • point x ∈
Ω ◦ particle in Px

4 Model of optimal radius

It is very hard just depending on the mathematical anal-
ysis to obtain the optimal radius of support of the weight
function used in the MLS approximation. To our knowl-
edge there is no a clear result about this problem up to

now. Here we try to develop a mathematic model and
systemic numerical tests based on approximation theory
to solve this problem partially.

According to reference [Atluri (2004)], the 4th order
spline function which takes as the following form

w0(t) =
{

1−6t2 +8t3 −3t4

0
0 ≤ t ≤ 1
1 < t

(11)

is suggested to use as the weight function in MLS method
because it has better smoothness of the first derivative of
the approximate function.

Owing to Weierstrass theorem that any continuous func-
tion can be approximated by a polynomial for any given
accuracy requirement, we take the monomial basis, for
example in R2 space they are

1,x,y,x2,xy,y2,x3,x2y,xy2,y3, · · ·

to express the polynomial which is used to approximate
a given functions. Thus a good approximation method
should approximate monomials efficiently, and the re-
verse is correct because of the following fact

| f − s∗| ≤ | f − p|+ | p− s∗| ≤ ε+ | p− s∗| ,

where f is any continuous function, s∗ is the approxima-
tion function of function f by MLS methods, and p is the
polynomial used to approximate f for a given accuracy
requirement ε > 0.

For each monomial, we use MLS method to approxi-
mate it, and find the best radius through comparing the
Sobolev norms of the approximate error. Considering the
reproducing ability for polynomials of MLS which is de-
cided by the linear space S used in formula (1), the first
several monomials no need to be tested.

Sobolev norm ‖•‖t is defined as follows

‖ f‖t =

(
t

∑
l=0

∑
|α|=l

Z
Ω

[Dα f (x)]2dΩ

)1/2

,

f ∈ Ht(Ω), Ω ⊂ Rd (12)

where multi-index α = (α1,α2, · · · ,αd) is used, |α| =
d
∑

i=1
αi, {αi}d

i=1 are nonnegative integers, and differential

operator Dα =
(

∂
∂x1

)α1
(

∂
∂x2

)α2 · · ·
(

∂
∂xd

)αd
.
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(a) 

 
(b) 

Figure 2 : Errors of MLS method to monomials with varying support radius (Linear basis). (a) ‖•‖0, (b) ‖•‖1 norms
are used to measure errors respectively.

Denote the monomial optimal radius (MOR) of support
of the weight used in MLS method as r(t,α)

opt while the ap-
proximated monomial is xα = xα1

1 xα2
2 · · ·xαd

d and Sobolev
norm ‖•‖t is used to measure approximate error. MOR

r(t,α)
opt can be gotten approximately through simple search-

ing methods and the initial searching radius can be de-
fined through the theory in section 2 (Step 0).

Generally, for different monomials, the MORs are differ-
ent each other. So we need use these MORs to develop
the optimal radius of MLS method r(t)

opt . Assume that the
MLS approximate has degree of (m∗−1) polynomial re-
producing. The following three steps can be used to ob-
tain r(t)

opt .

Step 1 Develop the group optimal radius (GOR) of
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Table 1 : Evaluation of optimal radius in linear basis case (h=0.25)

h=0.25 
n=2 

x2     xy 
n=3 

x3       x2y
n=4 

x4       x3y      x2y2 …

),0( α
optr 0.290    0.390 0.290    0.325 0.290    0.315    0.315 …

),0( n
optr 0.323 0.308 0.305 …t=0 

)0(
,noptr 0.323 0.318 0.316 …

),1( α
optr 0.420     0.390 0.420     0.415 0.420     0.415    0.410 …

),1( n
optr 0.410 0.418 0.416 …t=1 

)1(
,noptr 0.410 0.413 0.412 …

Table 2 : Evaluation of optimal radius in quadratic basis case (h=0.25)

h=0.25 
n=3 

x3      x2y
n=4 

x4        x3y      x2y2
n=5 

x5       x4y      x3y2 …

),0( α
optr 0.560    0.520 0.560    0.545    0.515 0.560    0.545   0.515 …

),0( n
optr 0.540 0.545 0.540 …t=0 

)0(
,noptr 0.540 0.542 0.541 …

),1( α
optr 0.585     0.575 0.590    0.580   0.525 0.630    0.580   0.555 …

),1( n
optr 0.580 0.573 0.588 …t=1 

)1(
,noptr 0.580 0.578 0.579 …

MLS method r(t,n)
opt as simple arithmetic average of the

MORs of monomials with the same degree n:

r(t,n)
opt = ∑

|α|=n

r(t,α)
opt

/
Cn, (13)

where Cn is the cardinality of multi-index set {α : |α| =
n}.

Step 2 Develop the partial optimal radius (POR) of
MLS method r(t)

opt,n as

r(t)
opt,n =

n

∑
l=m∗

wlr
(t,l)
opt

/
n

∑
l=m∗

wl. (14)

where {wl}n
l=m∗ are a group of weights of GOR{

r(t,l)
opt

}n

l=m∗ For the first several degrees of monomials

less than m∗, any radius which satisfies the condition of
Theorem 3 in this paper is optimal because of the zero er-
ror caused by the reproduction. So the optimal radius for-
mula (14) does not include the contributions of those low
orders of monomials. As the equal weights {wl}n

l=m∗ are
used for the GOR, formula (14) means the simple arith-
metic average over the nonzero error groups. Otherwise,
it is an average with weights on GOR. In order to ensure
better approximate ability on a linear space, gradual re-
ducing weights such as {wl = 1/2l}n

l=m∗ are suggested to
use.

Step 3 Develop the optimal radius of MLS method r(t)
opt

as the limit of POR

r(t)
opt = lim

n→∞
r(t)

opt,n. (15)

As uniform particles are used, r
(t)
opt depends on particle



Moving Least Squares Approximation 143

(a) 

(b) 

Figure 3 : Errors of MLS method to monomials with varying support radius (Quadric basis). (a) ‖•‖0, (b) ‖•‖1
norms are used to measure errors respectively.

step hobviously. Let’s name quantity r(t)
opt/h = s(t) as opti-

mal scaling. The numerical results in section 6 will show
that optimal scaling is independent on particle step h.

5 Optimal radius of linear and quadratic basis

Now we use the model posed in the previous section to
develop the optimal scaling of MLS in the case of linear
space S with linear and quadratic basis being used for
2 dimensional domain Ω = [0, 1]× [0, 1] with uniform
distributed particles.
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While the linear basis are used in MLS approximation,
the errors of approximations to a group of monomials
with varying radius in different norms are show in Fig.2,
and the MORs r(0,α)

opt and r(1,α)
opt is given in Tab. 1. In

the computing process, searching method is used with
researching step 0.005 and initial radius value 1.12h >√

5
/

2h ≈ 1.11803h that the reason has been discussed

in details in section 3.

Considering the symmetry, we just show data about the
partial monomials in a group in Fig. 2 and Tab. 1. GORs
and PORs are evaluated due to formula (13) and (14) with
weights {wl = 1/2l}n

l=m∗ respectively. Owing to formula

(15), the optimal radius of MLS r(0)
opt ≈ 0.316, r(1)

opt ≈
0.412 while particle step h = 0.25 is used, and the opti-
mal scalings s(0) ≈ 1.264, s(1) ≈ 1.648. The reason that
scaling s(1) > s(0) is that error measured by norm ‖•‖1
includes more items compared with norm ‖•‖0, namely
first order differentials, and this leads to more smooth re-
quirement.

While the quadric bases are used, the same process as the
linear case is followed except that for the initial searching
radius is 2.06h≈√

17
/

2h. The corresponding data are
shown in Fig. 3 and Tab. 2. The optimal radius of MLS is
r(0)

opt ≈ 0.541, r(1)
opt ≈ 0.579 while particle step h = 0.25

is used, and the optimal scalings s(0) ≈ 2.164, s(1) ≈
2.316.

Remark 8 Although the data we used is dependent on
node step h, the optimal scaling s(t) are independent of
h which will be shown through numerical examples in
next section. And the results can be applied to the other
2 dimensional domain with uniform nodes because linear
map does not change the key characteristics of polynomi-
als such as degree.

Remark 9 The model can be used to three dimensional
problem without any difficulty. As the quasi-uniform
[Babuska , Banerjee and Osborn (2003)] distributed par-
ticles are used, it can be used with little modify which
will be given in coming paper.

6 Numerical test

In this section, we check that the optimal scaling s(t) has
little dependent on node step h firstly. Then some com-
plex functions are used to test the efficiency of the opti-
mal scaling obtained by the model posed in this paper.

6.1 Optimal scaling independent on node step test

Two different node steps 0.2 and 0.125 compared with
the step 0.25 are used to the model in section 5 to obtain
the optimal scaling while linear and quadratic base are
used respectively. The optimal scaling results evaluated
from the data in Tab.5-6 and Tab. 7-8 are given in Tab. 3
and Tab. 4 for two kinds of linear space S respectively.
The results show the optimal scaling of radius of support
of weight function evaluated from different steps is equal
each other approximately, and the little difference among
them is caused mainly from searching step.

Table 3 : Comparing of optimal scaling with varying par-
ticle steps (linear basis)

h 0.25 0.2 0.125 . . .
s(0) 1.264 1.275 1.264 . . .
s(1) 1.648 1.665 1.672 . . .

Table 4 : Comparing of optimal scaling with varying par-
ticle steps (quadratic basis)

h 0.25 0.2 0.125 . . .
s(0) 2.164 2.175 2.176 . . .
s(1) 2.316 2.315 2.200 . . .

6.2 Efficient test

Three functions ex sinysin(x2y) and exy3
are used to test

the efficiency of the optimal scaling of support radius of
weight function in MLS method. And let particle step
h=0.125. The error curves measured by two kinds of
norms varying with support radius are displayed in Fig.
4 for linear basis case and Fig. 5 for quadratic basis.

Fig. 4 (a) and (b) show that while support radius

r = s(0)h = 1.264×0.125 = 0.158

and

r = s(1)h = 1.672×0.125 = 0.209

are used respectively MLS method with linear basis
gives the three test functions the best approximations all-
around in corresponding norm of ‖•‖0 and ‖•‖1. Simi-
larly, Fig. 5 (a) and (b) indicate that while MLS method
with quadratic basis and support radius taken as

r = s(0)h = 2.176×0.125 = 0.272
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(a)                                            (b) 

Figure 4 : Test about optimal radius (linear basis case). (a) ‖•‖0, (b) ‖•‖1 norms are used to measure errors
respectively.

 
(a)                                              (b) 

Figure 5 : Test about optimal radius (quadratic basis case). (a) ‖•‖0, (b) ‖•‖1 norms are used to measure errors
respectively.

and

r = s(1)h = 2.200×0.125 = 0.275 ,

the best approximations all-around to the three test func-
tions in norm of ‖•‖0 and ‖•‖1 are obtained respectively.

7 Conclusion

Based on matrix analysis and approximation theory, this
paper develops an efficient approach to find the optimal

radius of support of radial weight function used in mov-
ing least squares method. As an example, while uniform
distributed particles and the 4th order spline weight func-
tion are adopted in MLS method in two dimension do-
main, and two kinds of norms are used to measure er-
ror, optimal results for linear and quadratic basis are ob-
tained, and then the test data verify that the optimal value
are correct.
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Table 5 : Evaluation of optimal radius in linear basis case

h=0.2 
n=2 

x2      xy 
n=3 

x3       x2y
n=4 

x4      x3y      x2y2 …

),0( α
optr 0.235    0.310 0.235    0.260 0.235     0.255     0.255 …

),0( n
optr 0.260 0.248 0.247 …t=0 

)0(
,noptr 0.260 0.256 0.255                     …

),1( α
optr 0.340    0.310 0.340    0.335 0.340     0.335     0.330 …

),1( n
optr 0.330 0.338 0.336 …t=1 

)1(
,noptr 0.330 0.333 0.333 …

Table 6 : Evaluation of optimal radius in linear basis case

h=0.125 
n=2 

x2       xy 
n=3 

x3        x2y
n=4 

x4        x3y        x2y2 …

),0( α
optr 0.145     0.195 0.145     0.160 0.145     0.160     0.160 …

),0( n
optr 0.162 0.153 0.154 …t=0 

)0(
,noptr 0.162 0.159 0.158 …

),1( α
optr 0.215     0.195 0.210     0.210 0.210     0.210     0.210 …

),1( n
optr 0.208 0.210 0.210 …t=1 

)1(
,noptr 0.208 0.209 0.209 …

Table 7 : Evaluation of optimal radius in quadratic basis case

h=0.2 
n=3 

x3     x2y
n=4 

x4       x3y     x2y2
n=5 

x5        x4y      x3y2 …

),0( α
optr 0.450   0.415 0.450    0.440   0.415 0.450    0.440   0.415 …

),0( n
optr 0.433 0.439 0.435 …t=0 

)0(
,noptr 0.433 0.435 0.435 …

),1( α
optr 0.460   0.485 0.460   0.460   0.415 0.475    0.460   0.455 …

),1( n
optr 0.473 0.451 0.463 …t=1 

)1(
,noptr 0.470 0.464 0.463 …
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Table 8 : Evaluation of optimal radius in quadratic basis case

h=0.125 
n=3 

x3     x2y
n=4 

x4     x3y    x2y2
n=5 

x5       x4y       x3y2 …

),0( n
kr 0.280    0.260 0.280    0.280    0.255 0.280    0.280   0.265 …

),0( n
optr 0.270 0.275 0.275 …t=0 

)0(
,noptr 0.270 0.272 0.272 …

),1( n
kr 0.285    0.255 0.285    0.285   0.255 0.290    0.285   0.285 …

),1( n
optr 0.270 0.279 0.287 …t=1 

)1(
,noptr 0.270 0.273 0.275 …
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