Open Access iconOpen Access

ARTICLE

crossmark

Text-to-Sketch Synthesis via Adversarial Network

Jason Elroy Martis1, Sannidhan Manjaya Shetty2,*, Manas Ranjan Pradhan3, Usha Desai4, Biswaranjan Acharya5,*

1 Department of Information Science and Engineering, NMAM Institute of Technology (Nitte Deemed to be University), Nitte, India
2 Department of Computer Science and Engineering, NMAM Institute of Technology (Nitte Deemed to be University), Nitte, India
3 School of Computing, Skyline University College, University City, Sharjah, UAE
4 Department of Electronics and Communication Engineering, SR University, Warangal, Telangana, India
5 Department of Computer Engineering–AI & BDA, Marwadi University, Rajkot, Gujarat, India

* Corresponding Authors: Sannidhan Manjaya Shetty. Email: email; Biswaranjan Acharya. Email: email

(This article belongs to the Special Issue: Susceptibility to Adversarial Attacks and Defense in Deep Learning Systems)

Computers, Materials & Continua 2023, 76(1), 915-938. https://doi.org/10.32604/cmc.2023.038847

Abstract

In the past, sketches were a standard technique used for recognizing offenders and have remained a valuable tool for law enforcement and social security purposes. However, relying on eyewitness observations can lead to discrepancies in the depictions of the sketch, depending on the experience and skills of the sketch artist. With the emergence of modern technologies such as Generative Adversarial Networks (GANs), generating images using verbal and textual cues is now possible, resulting in more accurate sketch depictions. In this study, we propose an adversarial network that generates human facial sketches using such cues provided by an observer. Additionally, we have introduced an Inverse Gamma Correction Technique to improve the training and enhance the quality of the generated sketches. To evaluate the effectiveness of our proposed method, we conducted experiments and analyzed the results using the inception score and Frechet Inception Distance metrics. Our proposed method achieved an overall inception score of 1.438 ± 0.049 and a Frechet Inception Distance of 65.29, outperforming other state-of-the-art techniques.

Keywords


Cite This Article

APA Style
Martis, J.E., Shetty, S.M., Pradhan, M.R., Desai, U., Acharya, B. (2023). Text-to-sketch synthesis via adversarial network. Computers, Materials & Continua, 76(1), 915-938. https://doi.org/10.32604/cmc.2023.038847
Vancouver Style
Martis JE, Shetty SM, Pradhan MR, Desai U, Acharya B. Text-to-sketch synthesis via adversarial network. Comput Mater Contin. 2023;76(1):915-938 https://doi.org/10.32604/cmc.2023.038847
IEEE Style
J.E. Martis, S.M. Shetty, M.R. Pradhan, U. Desai, and B. Acharya, “Text-to-Sketch Synthesis via Adversarial Network,” Comput. Mater. Contin., vol. 76, no. 1, pp. 915-938, 2023. https://doi.org/10.32604/cmc.2023.038847



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 904

    View

  • 740

    Download

  • 1

    Like

Share Link