Vol.65, No.1, 2020, pp.205-224, doi:10.32604/cmc.2020.09227
OPEN ACCESS
ARTICLE
Simulation of Water-Soil-Structure Interactions Using Incompressible Smoothed Particle Hydrodynamics
• Abdelraheem M. Aly1, 2, *, Mitsuteru Asai3, Ehab Mahmoud Mohamed4, 5
1 Department of Mathematics, College of Science, King Khalid University, Abha, 62529, Saudi Arabia.
2 Department of Mathematics, Faculty of Science, South Valley University, Qena, 83523, Egypt.
3 Civil Engineering Department, Kyushu University, Fukuoka, 819-0395, Japan.
4 Electrical Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University, Wadi Addwasir, 11991, Saudi Arabia.
5 Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan, 81542, Egypt.
* Corresponding Author: Abdelraheem M. Aly. Email: abdelreheam.abdallah@sci.svu.edu.eg.
Received 24 November 2019; Accepted 09 March 2020; Issue published 23 July 2020
Abstract
In the present work, an incompressible smoothed particle hydrodynamic (SPH) method is introduced to simulate water-soil-structure interactions. In the current calculation, the water is modelled as a Newtonian fluid. The soil is modelled in two different cases. In the first case, the granular material is considered as a fluid where a Bingham type constitutive model is proposed based on Mohr-Coulomb yield-stress criterion, and the viscosity is derived from the cohesion and friction angle. In addition, the fictitious suspension layers between water and soil depending on the concentration of soil are introduced. In the second case, Hooke’s law introduces elastic soil. In ISPH, the pressure is evaluated by solving the pressure Poisson equation using a semi-implicit algorithm based on the projection method and an eddy viscosity for water is modelled by a large eddy simulation with the Smagorinsky model. In the proposed ISPH method, the pressure is stabilized to simulate the multiphase flow between soil and water. Numerical experiments for water-soil suspension flow of Louvain erosional dam break with flat soil foundation, is simulated and validated using 3D-ISPH method. Coupling between water-soil interactions with different solid structures are simulated. The results revealed that, the suspension layers with the Bingham model of soil gives more accurate results in the experiment as compared to the case of the Bingham model without suspension layers. In addition, the elastic soil model by the Hooke’s law can simulate soil hump accurately as compared to the Bingham model. From the simulations, avoiding erosion behind the structure for preventing the structure break during flood are investigated by using an extended structure or a wedge structure.
Keywords
Bingham model, ISPH method, rigid body, water-soil interactions.