
Computers, Materials & Continua CMC, vol.62, no.3, pp.1161-1185, 2020

CMC. doi:10.32604/cmc.2020.05247 www.techscience.com/journal/cmc

A Performance Fault Diagnosis Method for SaaS Software Based
on GBDT Algorithm

Kun Zhu1, Shi Ying1, *, Nana Zhang1, Rui Wang1, Yutong Wu1, Gongjin Lan2 and

Xu Wang2

Abstract: SaaS software that provides services through cloud platform has been more
widely used nowadays. However, when SaaS software is running, it will suffer from
performance fault due to factors such as the software structural design or complex
environments. It is a major challenge that how to diagnose software quickly and accurately
when the performance fault occurs. For this challenge, we propose a novel performance
fault diagnosis method for SaaS software based on GBDT (Gradient Boosting Decision
Tree) algorithm. In particular, we leverage the monitoring mean to obtain the performance
log and warning log when the SaaS software system runs, and establish the performance
fault type set and determine performance log feature. We also perform performance fault
type annotation for the performance log combined with the analysis result of the warning
log. Moreover, we deal with the incomplete performance log and the type non-equalization
problem by using the mean filling for the same type and combination of SMOTE (Synthetic
Minority Oversampling Technique) and undersampling methods. Finally, we conduct an
empirical study combined with the disaster reduction system deployed on the cloud
platform, and it demonstrates that the proposed method has high efficiency and accuracy
for the performance diagnosis when SaaS software system runs.

Keywords: GBDT algorithm, SaaS software, performance log, performance fault diagnosis.

1 Introduction
In recent years, with the rapid development of Internet technology, application software has
evolved from the single, closed, and static form to the distributed, open, and dynamical
from. An innovative application mode Software-as-a-Service (SaaS) begins to rise [Zawoad,
Dutta and Hasan (2013)].
SaaS software has to face not only more challenges than the traditional mode in
development, such as multi-users, high concurrency, and large data volume [Wen, Zhang
and Zhu (2015)], but also more performance problems. SaaS software will suffer the
declination of software service quality and even the software performance degradation due
to a variety of factors. On one hand, the performance degradation may be caused by the
software architecture and code design flaws, so we need to improve its architecture design

1 School of Computer Science, Wuhan University, Wuhan, 430072, China.
2 Department of Computer Science, Vrije University Amsterdam, Amster-dam, 1081HV, The Netherlands.
* Corresponding Author: Shi Ying. Email: yingshi@whu.edu.cn.

mailto:yingshi@whu.edu.cn

 CMC, vol.62, no.3, pp.1161-1185, 2020 1162

from the software constructing process [Ding, Fu, Lou et al. (2012)]. On the other hand, the
performance degradation may be caused by SaaS software running in a large-scale, high-
complexity and unpredictable dynamic cloud environment [Jin, Liu, Zheng et al. (2018)].
Possible situations are as follows: (1) Insufficient resources on the virtual machine or
physical node. For instance, the CPU utilization, memory and disk space resources reach
the threshold; (2) Service requests to the server are too frequent. For example, many users
send a large number of service requests at the same time within a certain period of time,
which results in consequence that the server cannot process a huge amount of requests in
time, so average response time is excessively long for user service requests; (3) Dynamic
changes in hard- ware resource operating conditions. For instance, the power interruption or
the downtime of the virtual machine, the disconnected network connection, and the
unreliable host [Wu, Garg, Versteeg et al. (2014); Nagaraj, Killian and Neville (2012);
Mavridis and Karatza (2017); Malik, Hemmati and Hassan (2013)]. The above situations
may cause application software in SaaS mode to suffer from software performance
degradation such as the long response time, the reduced resource utilization or the
throughput rate, and even the loss of availability.
In the modern computer system, logs are used to record the operation status of the system,
the event occurring in the system, and the anomaly behavior in the system [Ju, Wang, Fu
et al. (2010)]. Therefore, the log data (such as the running log, the warning log, the debug
log, etc.) can be considered to be a primary information source for diagnosing the
performance fault. The traditional method of diagnosing the performance fault based on
logs is to rely on system maintenance personnel to extract the information related to
performance faults from a large number of complex logs [Gill, Jain and Nagappan
(2011)]. Then they analyze relevant logs based on the experience to diagnose and locate
performance faults. However, most of application softwares in SaaS mode are in a
distributed cluster environment, which cause application software to interact frequently
among various layers. So various components in the system generate a large amount of
log data, which not only increases the difficulty of performance fault diagnosis, but also
makes the traditional fault diagnosis method difficult to perform real-time and
comprehensive fault diagnosis [Duan and Babu (2008); Zou, Qin and Jin (2016)].
However, the performance-related log and fault log data in the current system are
insufficient and considered to be sensitive [Schroeder and Gibson (2010)]. Therefore, it is
of important significance to dig out the useful information for the automatic
performance fault diagnosis from severely lack of performance-related log data.
The main contributions of this paper are as follows:
(1) By analyzing the KPI (Key Performance Indicator) of the software runtime

resource layer, we establish the performance fault type set and extract the strongly
correlated performance features in the performance log. We also leverage the analysis
result of the warning log to perform the reasonable performance fault type annotation
for the performance log.

(2) We deal with the incomplete performance log and the non-equalization problem of the
type by using the mean filling for the same type and combination of SMOTE (Synthetic
Minority Oversampling Technique) and undersampling methods and ensure the validity
and equalization of the sample.

A Performance Fault Diagnosis Method for SaaS Software 1163

(3) We use the GBDT (Gradient Boosting Decision Tree) algorithm to construct a
performance fault diagnosis model.

(4) We conducted an empirical case study of a disaster reduction system deployed on the
cloud platform to verify that the proposed method has high efficiency and accuracy
for the performance diagnosis of SaaS software systems.

The rest of this paper is organized as follows: Section 2 introduces the background and
related work of this paper; Section 3 describes our methodology in detail; Section 4
describes the experimental setup; Sections 5 introduces experimental process and results
analysis; Section 6 concludes this paper and outlines directions of future work.

2 Background & related work
This section summarizes the background and the related work on performance fault
diagnosis methods and processing methods of performance log data.

2.1 The performance fault diagnosis method
In essence, the performance fault diagnosis is a problem of classification and
identification. That is, the performance state of a system is divided into normal state and
abnormal state. The anomaly state is specifically which kind of specific performance
fault, and this is a recognition problem [Tsai, Bai and Huang (2014)]. Here we mainly
introduce some performance fault diagnosis methods based on the log.
Lim et al. [Lim, Lou, Zhang et al. (2014)] proposed an automatic identification method
based on Hidden Markov Random Field (HMRF) method for known and unknown
performance problems or faults. Bezemer et al. [Bezemer and Zaidman (2014)] proposed
a method for selecting performance improvement points (PIOs) based on log data, such
as bottleneck components or performance fault points, to optimize performance
bottlenecks or to process faults. Syer et al. [Syer, Jiang, Nagappan et al. (2013)] proposed
a method to automatically diagnose different memory-related problems by combining the
performance counter and the execution log.
Wang et al. [Wang, Zhang, Ye et al. (2016)] proposed an online incremental clustering
method to recognize access behavior patterns. The method uses the correlation analysis to
model the correlation between workloads and application performance/resource utilization
metrics in a specific access behavior pattern. Wang et al. [Wang, Wei, Zhang et al. (2014)]
proposed an incremental clustering algorithm for training workload patterns online. The
method employs the local outlier factor (LOF) in the recognized workload pattern to detect
anomalies, and locates the anomalous metrics with the student as t-test method.

2.2 The performance log data processing method
The collected performance log may have some redundant information or missing
information or non-equalized cases in the overall data, and they cannot be directly used in
performance fault diagnosis. Therefore, it is very important for how to process these
performance logs. The following describes the current research methods.
(1) Performance Log Data Missing Processing
Gashler et al. [Gashler, Smith, Morris et al. (2016)] proposed an extended missing-value-

 CMC, vol.62, no.3, pp.1161-1185, 2020 1164

based substitution filling algorithm based on information obtained. He et al. [He and Garcia
(2008)] introduced the multi-filling method, and its main idea is to construct m substitute
values for each missing value. Rahman et al. [Rahman and Islam (2011)] proposed a
technique DMI (A Decision Tree-based Missing Value Imputation Technique) that can
effectively fill in missing values in datasets with numeric and classification attributes using a
combination of C4.5 decision tree algorithm and EM (Expectation Maximization) algorithm.
(2) Performance Log Equalization Processing
The related performance log data often does not have the feature of class distribution
equalization due to certain factors, which leads to the declination in the classification
accuracy of traditional machine learning methods. At present, the problem of non-equalized
performance log data classification is mainly based on data level research. Research based
on the data level generally uses sampling mechanisms to improve the distribution of data.
Chawla et al. [Chawla, Bowyer, Hall et al. (2011)] proposed an oversampling-based
synthetic minority oversampling technique SMOTE. The algorithm makes use of the
similarity between a few kinds of samples in the feature space to artificially generate data
samples. This method improved the effect, but it introduced many subjective factors to the
original data, which will cause excessive generalization problems. Liu et al. [Liu, Wu and
Zhou (2006)] proposed a non-equalized data classification method based on the cascade
model. This method combines the ensemble learning with the cascade model and uses the
repeated undersampling method to perform data equalization.

3 Methodolody
Before introducing the method proposed in this paper, we first give some definitions:
Performance Log: It refers to recording the related performance information when the
system runs, such as the CPU utilization, and it is recorded in the form of numerical value.
Warning Log: It means to record the abnormal state information when the system runs. It
usually contains the recording time, the abnormal state, the abnormal level, etc., and it is
recorded in the form of text.
Performance Fault: It refers to emerging system performance abnormal cases such as the
excessive resource utilization rate, the long response time, and the declined throughput rate
when the system runs.
This paper proposes a performance fault diagnosis method based on the GBDT algorithm
for the performance log. The performance fault diagnose process is shown in Fig. 1.
Firstly, we establish a performance fault type set by analyzing existing performance fault
types, and perform feature determination on the collected performance log; Secondly, we
analyze the collected warning log and determine the fault type of each warning log, and we
give a reasonable performance fault type annotation for each performance log combining
with the fault type of the warning log; Then we perform preprocess operations such as the
missing value processing and the sample equalization processing for the performance log to
form the training set; Finally, we use the GBDT algorithm to construct a performance fault
diagnosis model and apply it to perform the performance fault diagnosis on SaaS software.

A Performance Fault Diagnosis Method for SaaS Software 1165

Figure 1: Overview of performance fault diagnose process

3.1 Establishing of the performance fault type set and determination of the performance
log feature
Before performing the fault diagnosis based on the performance log, we need to establish
the performance fault type set and determine the performance log feature.

3.1.1 Establishing of the performance fault type set
The performance of the application software system in SaaS mode can generally be
reflected by indicators such as the response time, the throughput rate, and the resource
utilization. The above three performance indicators are interconnected and interactive.
However, if the fault set is only defined as the change of these indicators, it is not enough
for the maintenance staff to obtain the specific information directly such as the location
of the performance fault, and cannot achieve the purpose of recovering the performance
fault quickly. Therefore, this paper will describe the fine-grained performance fault type.
The key performance indicators (KPI) at the resource level such as the CPU, the memory,
the disk, and the network when the system runs are divided as shown in Tab. 1, and also
include the normal status. Tab. 1 lists all performance fault types contained in the
performance fault type set established in this paper. The diagnostic result is also based
on the performance fault type set. We abstract the performance fault type set into the
vector form of performance fault types, and represent them in the following form:

 CMC, vol.62, no.3, pp.1161-1185, 2020 1166

Table 1: The set of performance fault types

Object Performance Fault Type Performance Fault Description
CPU FTCU CPU load occurs fault

FAPQL Processor queue length occurs fault
memory FPI Page in occurs fault

FPO Page out occurs fault
FCR Cache’s reading rate occurs fault
FCW Cache’s writing rate occurs fault

FCHR Cache occupancy occurs fault
disk FDU Disk occupancy occurs fault

FDR Disk’s reading rate occurs fault
FDW Disk’s writing rate occurs fault

the internet FNI The network’s receiving data rate occurs fault
FNO The network’s sending data rate occurs fault

normal Norm. No performance fault

3.1.2 Determination of the performance log feature
We need to perform the feature determination on the performance log to reflect the
performance fault type contained in the performance fault type set. We still start from
the resource layer KPIs such as the CPU, the memory, the disk, and the network when the
system runs, and determine the feature of the five major category performance logs, which
are based on the time feature, the CPU performance feature, the memory performance
feature, and the disk performance feature and the network performance feature. The time
feature is to prepare for the subsequent performance log annotation, and the rest are the
performance fault types within the corresponding performance fault type set. Tab. 2 lists
all features of the performance log and describes them briefly.
We can represent the performance log as follows:

A Performance Fault Diagnosis Method for SaaS Software 1167

Table 2: Performance features and description

Type Feature Description
time T Time of recording performance indicators
CPU CPU_Util. CPU utilization (%)

CPU_Int. The number of CPU interrupts per second (/s)
memory MEM_U Memory occupancy (%)

MEM_PI Page in rate (pages/s)
MEM_PO Page out rate (pages/s)

disk DISK_R Disk’s reading operation rate (/s)
DISK_W Disk’s writing operation rate (/s)
DISK_Q Disk queue length (queue length)
DISK_IO Disk IO rate (/s)
DISK_L Disk load rate (%)

DISK_TT Disk transmission time (ms)
the internet NET_PS Network’s sending packets rate (packets/s)

NET_PR Network’s receiving packets rate (packets/s)
NET_KS NIC’s sending bytes rate (kb/s)
NET_KR NIC’s receiving bytes rate (kb/s)

3.2 Log analysis and annotation
This paper combines performance logs with the supervised GBDT algorithm for perfor- mance
fault diagnosis. Therefore, each performance log used to construct a model has one or more
explicit learning objectives or annotations, which are the performance fault type. However, the
performance log obtained in reality is often not labeled with the performance fault type, so we
need to annotate the log type. Firstly, we need to analyze warning logs and confirm the fault
type of each warning log. Then we use the time, the status, the component, and the fault type
of the warning log to annotate the performance log properly.
Some monitoring tools record the status changes generated by the system to form some
warning logs, which generally include the time or the timestamp of the warning, the
status of the warning, and the detailed description information of the warning, the level of
the warning, and the specific component of the warning, and so on. Tab. 3 lists the basic
structure of warning logs generated by the system, and describes their attributes.

 CMC, vol.62, no.3, pp.1161-1185, 2020 1168

Table 3: Basic structure and description table of the warning log

Warning Log Property Attribute Meaning Attribute Format Sample Example

time/time stamp
Specific time of
the warning log

recording
String type

12/23/2017
10:24:28

status
The occurrence or
elimination of the

i

Enumeration type Warning raised

description information
Describe in detail the
cause of the warning
occurring

String type

158.98 pages/second
are being moved
from virtual memory
to physical RAM

warning level The warning level Enumeration type Medium

component The specific
component of the

i i

String type Disk 1-Used MB
(Used Disk 1)

The status attribute includes four major categories, namely raised (start), upgraded
(gradation from one level to another), downgraded (downgradation from one level to
another), and canceled (end), respectively. The warning level attribute includes Normal,
Low, Medium, and High, respectively. Based on the above basic structure, the warning
log can be repre- sented by the following form:

We can find that the warning log does not contain the clear performance fault type,
however, to some extent, the Component attribute can reflect the warning log type.
Therefore, we extract the Component attribute value and compare with the established
performance fault type set. Finally, the performance fault type of the warning log is
determined as the performance fault type in the performance fault type set. The general
process is as follows:
1) Removing the Time attribute value of the warning log that does not meet the
specified format.
2) Confirming the performance fault type for the warning log of the Normal level. We can
judge the Status attribute value of the warning log directly. If the attribute value is Normal,
we confirm that the warning log is the Norm. type.
3) Using the following algorithm 1 to confirm the performance fault type of the non-
Normal level warning log.
After the above process, we can represent the warning log as follows:

A Performance Fault Diagnosis Method for SaaS Software 1169

Algorithm 1 The fault type comfirming algorithm of non-Normal level warning Log

Input:
L={Time, Status, Details, Severity, Component}, a non-Normal level warning log;
A: Performance fault type vector set, which is performance_fault_type;

Output:
T: The performance fault type corresponding to this warning log;

1: c ← Component attribute values in L
2: label ← extract c by using [ˆ()]+
3: if label contains elements in A then
4: T ← corresponding elements in A
5: else if label contains Total Percent then
6: T ← “total cpu utilization”
7: else if label contains Used Disk then
8: T ← “disk usage”
9: end if

10: Delete Details attribute values in L
11: return T

Although the performance fault type in the performance fault type set can be reflected
by extracting the Component attribute value of the warning log, it cannot fully reflect the
performance fault type in the performance fault type set from the time, the CPU, the
memory, the disk and the network performance characteristic. Therefore, we can only
mark the performance log through the warning log, and reflect the performance fault
type by determining the characteristics of the performance log.
After confirming the performance fault type corresponding to each warning log, we will
annotate the performance log as follows.
The steps of the performance fault type annotation for performance log are as follows:
1) Finding the warning log pair based on the Status, Level, and Component of the warning
log to record the start and the end of a certain performance status change.
2) Extracting the warning log pair, and confirming the start and the end time of the status
change, and the performance fault type of the warning log pair. That is, the recording time
of the front warning log in the warning log pair is taken as the start time of the performance
status change, and the recording time of the later warning log is the end time of the
performance status change, and the performance fault type is recorded as the performance
fault type of the warning log pair.
3) Traversing through the performance log and annotating the performance fault type for
the performance log corresponding to the warning log pair.
After processing, each performance log contains at least one performance fault type. In order
to facilitate the construction of the diagnosis model later, the performance fault type

 CMC, vol.62, no.3, pp.1161-1185, 2020 1170

corresponding to each performance log is vectorized. In above constructed the performance
fault type set, there are a total of 13 performance fault types, so we use a 13-dimensional 0,1
vector to represent each performance log. The type represented by each dimension is the type
of performance fault type set from top to bottom. The value of each dimension is 0,1. For 1, it
means that the performance log belongs to the type. For 0, it means that the performance log
does not belong to the type. For example, if a performance log belongs to both the FCW and
FDR performance types, its annotation is 0000010010000.

3.3 The performance log preprocessing method
This section introduces the preprocessing of the performance log, including processing for
the missing value and the non-equalized data.

3.3.1 Missing value processing
This method uses the combination of deletion and substitution filling for the processing of
missing value of the performance log. We use different methods for different types of
missing values. The missing rate of the performance log can be filled by a median value
method within a certain range, but when the missing rate exceeds a certain threshold or the
missing data is important information, the performance log data is considered to have no
value, and the value should be removed.
We consider that the performance fault type feature in the annotated performance log
is the most important, followed by the missing rate of a performance log. First of all,
GBDT is a supervised learning model, so it cannot be vacant for the performance fault
type, otherwise it will not be effectively learned. Secondly, after the experimental
analysis, when the missing rate of a performance log exceeds 26 percent, the
diagnostic model has poor diagnostic performance, so if it exceeds this threshold, the
performance log will be removed. Finally, if a certain performance log data meets the
above two requirements, but it has the missing value, and we calculate the median
value of all performance logs on the missing feature with the same performance fault
type as the performance log to approximate filling. The algorithm 2 gives the specific
algorithm for the substitution filling of missing value in this paper.

3.3.2 Data equalization processing
When the non-equalized performance log is used for GBDT training and the performance
fault diagnosis model construction, the performance fault diagnosis model may be
overfit- ting on the performance log of most performance fault types, the underfitting
phenomenon occurs on the performance log of a small number of performance fault types,
which greatly reduce the diagnostic capability of the performance fault diagnosis model
and increases the recovery time of SaaS software performance fault. Therefore, we need
to equalize the performance fault type before using the performance log.
In this paper, we use the combination of the SMOTE and the undersampling to equalize
the performance log. The main idea of the method used in this paper is to select a
performance fault type belonging to a few types as the partitioning criteria, and to
subdivide the performance log of most performance fault types using the undersampling,
so that per subset is the same number as the partitioning criteria. Moreover, performance

A Performance Fault Diagnosis Method for SaaS Software 1171

logs of a few performance fault types are synthesized in the SMOTE mode, so that the
number of a few type set after the synthesis are the same as the partition criteria. Finally,
these performance log sets or subsets are combined one by one and applied to construct
the performance fault diagnosis model.

Algorithm 2 The substitution filling algorithm of missing value
Input:

D={d1, d2, d3, ... dn}, di is the annotated performance log, and the structure is
performance_log_labeled; D’: copy of set D

Output:

D: the processed performance log set

1: for i←0 to the length of D do
2: number of vacant values Ncount←0
3: for j←1 to the number of features of D[i] do
4: if D[i][j]==null OR D[i][j]==NaN OR D[i][j]==nan then
5: Ncount ++
6: if the number of features of Ncount/ D[i]>26% then
7: remove D [i] from set D
8: break
9: end if

10: the counting variable count←0
11: calculate the sum variable total←0
12: for k←0 to the length of D’ do
13: if D’[k] is the same fault type as D[i] then
14: if D’[k][j]==null OR D’[k][j]==NaN OR D’[k][j]==nan then
15: count++
16: total+=D’[k][j]
17: end if
18: end if
19: end for
20: D[i][j]←total/count
21: end if
22: end for
23: end for
24: return D

We analyze performance logs collected and find that the number of performance logs be-
longing to the FDR, FDW, FCW, FPO, and FAPQL performance fault types are relatively
few, and the number of performance logs belonging to the FCR, FCHR, FDU, FNT, and
FNO performance fault types are very few, there are more or even more performance logs
belonging to the FTCU, FPI, and Norm. performance fault types. We consider that the total
number of performance logs collected is not very large, if we choose one of a few types of
performance faults as the partitioning criteria, this will not be conducive to improving the

 CMC, vol.62, no.3, pp.1161-1185, 2020 1172

diagnostic capability of the performance fault diagnosis model. However, if one of the three
most performance fault types are selected as a partitioning criterion, it does not conform
to our method thought. Therefore, we select the optimal performance fault type as the
partitioning criteria among the relatively few performance fault types. Through the
experimental comparison, we finally selected the FAPQL performance fault type as the
partitioning criteria to equalize performance fault types. The performance fault type
equalization process is shown in Fig. 2.
After the above process, a number of diagnostic models are generated in the end, and we
use the voting method in the end. The result with the highest number of votes will be used
as the diagnosis result. The specific process will be introduced in the next section.

Figure 2: The performance fault type equalization process

3.4 Construction of the performance fault diagnosis model
We use the GBDT algorithm to construct the performance fault diagnostic model. First of
all, GBDT is an integrated model. Through multiple iterations of the weak learning model,
a strong learning model is formed to improve the diagnostic capability of the model, and its
diagnostic capability can be improved by comparing to the single complex learning model.
Secondly, GBDT adopts an enhanced learning model with residuals as the target in the
negative gradient of the residuals in each iteration, which can reduce the complexity of
construction time and enable the diagnostic model to be constructed quickly, and it also
can be faster than constructing a single complex learning model. In summary, the GBDT
is more in line with construction requirements of the SaaS software performance fault
diagnosis model in terms of the diagnostic capability or the construction and the
diagnostic speed.
Two key parts of GBDT, one is the choice of weak learning model and the other is the
choice of loss function. In this paper, we use the Classification and Regression Tree
(CART) as a weak learning model of GBDT. The leaf nodes of the finally established
decision tree represent the regression prediction of the performance log. However, our
performance log regards the performance fault type as the learning target, and it cannot
apply to the regression prediction directly. Therefore, we need to logistically transform
the type of performance fault (as shown in Eq. (1)), that is, we need to map the

A Performance Fault Diagnosis Method for SaaS Software 1173

performance fault type to the corresponding probability.

∑ =

= K

k l

k
k x

x
x

f
fp

1
))(exp(

))(exp(
)((1)

where K is the number of performance fault types, fk (x) is the estimated value of the
diagnostic model.
In addition, since our goal of constructing the performance fault diagnosis model is to
classify the performance log for multiple performance fault types rather than the regression,
instead of choosing the common variances as the loss function, we choose the log likelihood
function as the loss function, and we use the Eq. (2) to represent the loss function in GBDT.

)(log)),((
1

xyxFL py k

K

k k∑ =
−= (2)

where K is the number of performance fault types (the value is 13 in this paper). If yk =1,
the performance log belongs to the k-th fault type.
Finally, we can form n performance fault diagnosis model. Then we will use the voting
mechanism to output the final diagnosis result of the n diagnosis models, and 0, 1 strings
will be converted according to the established set of performance fault types.
In addition, the method will save the obtained performance log and the diagnosis result
using the performance fault diagnosis model, and periodically use the saved data to update
the performance log set and the performance fault diagnosis model.

4 Experiment setup
This section first describes the source of the performance log in the experiment, and then
introduces performance metrics used in this paper.

4.1 Log collection
Some large systems can generate a lot of performance logs and warning logs for us to use.
In this paper, we use the Spotlight monitoring tool to remotely monitor the resource used by
the comprehensive disaster reduction spatial information service application system in real
time, mainly monitoring the master node system resource layer, and collecting the
performance log. The application system includes a series of service components. These
components visualize the risk and the loss of natural disasters in both the space and the time
in a short time, and can provide the intuitive information for each disaster management
work, so as to provide the SaaS service for the system. We deploy the system to the Spark
cloud computing platform and deploy it on a master node and three slave nodes in a cluster
deployment manner. The operating system of each node server is Ubuntu 14.04.2, and the
JDK is 1.7.0, the Spark version deployed is Spark 1.3.1, Hadoop is 2.6.0, and Scala is
2.11.6. The monitoring tool can monitor the resources we need such as the CPU, the
memory, the disk and the network usage.
We perform the continuous monitoring for the system about 72 hours and export
monitoring results, which are warning log files and distributed performance log files for
each performance indicator, respectively. Tab. 4 shows three consolidated performance

 CMC, vol.62, no.3, pp.1161-1185, 2020 1174

logs. Tab. 5 shows three warning log samples. Through statistics, we collected a total of
2448 performance logs and a total of 1838 warning logs, and they are stored in the csv
format file.

Table 4: Performance log samples

12/23/2017 10:24:28, 67.2909, 71.1141, 76.2116, 67.7157, 13050.49, 11001.55,
10532.60, 8568.75, 613.2422, 0.8156, 0, 0, 0.8156, 0.0016, 0.8156, 0.1584, 1.9,
9.7866, 12.2333, 0.549278, 0.939533

12/23/2017 13:30:10, 45.6847, 50.4671, 49.4423, 51.492, 13180.54, 12325.07,
11138.17, 9481.67, 639.6404, 0.1574, 0, 0.1215, 4.1302, 0.0075, 4.2516, 0.7454,
1.8, 1.7315, 1.2593, 0.170327, 0.203224
12/23/2017 13:32:21, 44.2441, 50.7946, 53.3844, 49.5759, 17749.20, 16778.84,
16796.97, 11502.39, 617.6719, 4.6802, 74.8833, 0.6825, 9.8179, 0.0083, 10.5305,
0.8348, 0.8, 7.5078, 2.9251, 0.801554, 0.570077

Table 5: Warning log samples

12/23/2017 10:24:27, warning raised, Windows processor utilization is currently
70.58 percent., Low, Total CPU Usage (Average Total Percent)

12/23/2017 11:56:33, warning downgraded from Medium, 44.73 pages/second are
being moved from virtual memory to physical RAM., Low, Page reads (Page ins)

12/23/2017 14:20:21, warning raised, 241.80 pages/second are being moved from
virtual memory to physical RAM., High, Page reads (Page ins)

4.2 Evaluation measures
This method is used for the multi-classification task, and the performance metric of the
traditional two-classification has certain limitations, because in the case of the multi-
classification problem, we cannot determine that which class is a positive or negative
example. Therefore, based on two-classification performance metrics, we can use
Confusion Matrix, Overall Classification Accuracy (Over_Acc), Average Classification
Accuracy (Avg_Acc), Average Classification Precision(Avg_Prec), Classification Accuracy
of Each Category, Recall Rate of Each Category and Fb-score of Each Category are used as
performance metrics to evaluate results of multi-classification.
Confusion matrix, also called error matrix, which is an n*n matrix. Each row represents
the actual category of the sample, and each column represents the predicted value of the
sample in the model.
The Over_Acc is the ratio of the total sample size to the total sample size of each category
that is correctly classified. The Avg_Acc is the average of the classification accuracy for
each category, and the Avg_Prec is the average of the precision of each category.

A Performance Fault Diagnosis Method for SaaS Software 1175

5 The experiment process and the result analysis
In this section, we introduce the experimental process and the experimental result in detail.

5.1 The experiment process
We use the GBDT algorithm to construct the diagnostic model. The important parameter in
the interface include the step size learning_rate, the number of iterations n_estimators, the
tree depth max_depth, the minimum number of performance logs required for internal nodes
to continue to divide min_samples_split, and leaf nodes including the minimum performance
log number min_samples_leaf and the self sampling ratio subsample. The selection of the
above parameters will affect the diagnostic capability of the diagnostic model, so we use the
grid search method to adjust the parameter.
Figs. 3-6 show the part important adjustment process, they mainly introduce the accuracy of
different n_estimators, subsample, min_samples_split, min_samples_leaf. We finally define
the parameters as follows: learning_rate=0.05, n_estimators=20, max_depth=3,
min_samples_split=300, min_samples_leaf =95, subsample=0.7.

Figure 3: The accuracy of different n_estimators

 CMC, vol.62, no.3, pp.1161-1185, 2020 1176

Figure 4: The accuracy of different subsample

Figure 5: The accuracy of different min_samples_split

A Performance Fault Diagnosis Method for SaaS Software 1177

Figure 6: The accuracy of different min_samples_leaf

Table 6: The result of confusion matrix

Confusion
Matrix

Prediction Value Total Number
of True Value 0 1 2 3 4 5 6 7 8 9 10 11 12

True
Value

0 16 0 0 1 0 1 0 0 0 0 0 1 0 19
1 1 15 0 0 0 0 0 1 0 1 0 0 1 19
2 0 0 17 1 0 0 0 0 0 0 0 1 0 19
3 0 0 0 16 0 0 1 0 0 0 0 0 1 18
4 0 0 2 0 14 0 0 0 0 0 0 0 0 16
5 0 0 0 0 1 15 0 0 1 0 0 0 1 18
6 1 0 1 0 0 0 14 0 0 0 0 1 0 17
7 0 0 0 1 0 0 0 17 0 1 0 0 1 20
8 1 0 0 0 2 0 0 0 15 0 1 0 0 19
9 1 0 0 0 0 0 1 0 0 16 2 0 0 20
10 0 2 0 0 0 0 0 0 1 1 18 0 0 22
11 0 1 0 0 0 1 0 0 0 0 0 16 0 18
12 0 0 0 0 0 0 1 1 0 0 0 0 18 20

Total
Number of
Prediction
Value

20

18

20

19

17

17

17

19

17

19

21

19

22

245

5.2 The experimental result analysis
We use the 10-fold cross-validation method to divide the performance log set after the
missing value processing, and equalize the training set for the performance fault type, and
generate 28 combined performance log sets, so we get finally constructed 28 performance
fault diagnosis models for each set using the above method. Then we use the data in the test
set as the input, and vote on the result of 28 performance fault diagnosis models to obtain
the final diagnosis result. Moreover, we verify the diagnosis result and the learning target

 CMC, vol.62, no.3, pp.1161-1185, 2020 1178

in the the test set. Tab. 6 below is confusion matrix of the cross-validation result.
From the value on the diagonal of the 13*13 confusion matrix, it can be seen that the same
number of predicted value and true value for each type of performance fault in the
performance fault diagnosis model, that is, there are 207 performance logs in the 245
performance data test set that are completely correct for the performance fault type
determination. Based on the value at each intersection point, the performance fault
diagnosis model diagnoses one type of performance fault as another type of performance
fault incorrectly. It can be seen intuitively that the correct or incorrect diagnosis result for
each performance fault type. We can see that the model is stable for each type of prediction
in this verification, and there is no underfiting or overfiting for a certain type of
performance fault.
Fig. 7 shows the diagnostic capability of the model for each performance fault type from
three aspects of accuracy, recall rate, and F2 value after 10 cross-validation. At first, the
method proposed in this paper is used to diagnose the performance fault when the system
runs. Therefore, so we need to increase the accuracy of the model in priority, that is to say,
performance faults belonging to the Norm. type are positive examples, non-Norm. types are
negative examples, then the model requires higher false positive examples than false
negative examples. Second, in the negative example, we need to pay attention to the recall
rate of each performance fault type, that is, the sensitivity of the diagnostic model for
diagnosing the non-Norm. performance fault type, and ensure that more type samples to be
accurately diagnosed. Therefore, we need to pay attention to the accuracy of the Norm. type
and recall rate of the non-Norm. type. We can adjust the b value of Fb, and b=2 will make
recall rate more impactful, it is because recall rate occupies a greater weight when b>1.

Figure 7: Results of various types of experiments

From the Fig. 7, we can see that the performance fault diagnosis model has a diagnostic
capability of more than 0.75 for the performance log belonging to each performance fault
type. By comparing with the performance fault type set, we know that the type 12 of the

A Performance Fault Diagnosis Method for SaaS Software 1179

performance fault is the Norm. type, in addition, the accuracy and recall rate are 0.818 and
0.9, respectively. Most other non-Norm. types have a recall rate of 0.83. The lowest is type
1, which is FAPQL, and its recall rate is 0.789. We can see that the diagnosis model has the
little difference in the diagnostic capability of each performance fault type, and there is no
obvious phenomenon of overfitting or underfitting for a certain type.
The following Fig. 8 shows the diagnose result that the diagnostic model is constructed
without using the equalization process of the performance fault type. We can see that the
diagnostic model has a large difference in diagnostic capability for each type. Performance
logs belonging to most performance fault types have strong diagnostic capability, for
example, type 0 (corresponding to FTCU type, accounting for 25 percent of the total number
of performance logs) and type 12 (corresponding to Norm type, accounting for 44 percent of
the total number of performance logs) are relatively high regardless of the accuracy or recall
rate, basically all around 0.85 or even 0.9. However, the diagnostic performance of
performance logs belonging to very few performance fault types is relatively weak, such as
types 4, 6, 7, 10 and 11 (corresponding to FCR, FCHR, FDU, FNI, and FNO, all make up 1
percent of the performance log). Neither the accuracy nor recall rate is high, because we did
not do the type equalization processing, and a few types and very a few types of
performance logs used to construct diagnosis model are relatively few, which leads to the
underfitting phenomenon of the diagnostic model on this type. By comparing Fig. 7 and Fig.
8, we can see that the importance and the necessity of the sample equalization in the entire
performance fault diagnosis method.

Figure 8: Results of various types of experiments

Tab. 7 shows Avg_Acc, Over_Acc, Avg_Prec, Average F2, and Training Time and
Predicting Time for the diagnosis model.
From the above table, it can be seen that Avg_Acc, Over_Acc, Avg_Prec, Average F2 of the
proposed method as a whole are all above 78 percent for the performance fault diagnosis,
and it can perform the accurate and comprehensive diagnosis of various types in the case
of non-equalization types, and it do not appear the underfitting phenomenon in a few types.

 CMC, vol.62, no.3, pp.1161-1185, 2020 1180

In terms of efficiency, the training of diagnostic model takes 2388 ms, and the predicting
of diagnostic model takes 170 ms. Although the training time of the diagnostic model is
longer, the training of the model will be completed before the real-time diagnosis in
practical applications, so we only focus on the prediction time of the diagnostic model.
Besides, we can also see that the prediction time of the diagnostic model is relatively
short within the accepted range. Therefore, our performance fault diagnosis model has
good results in terms of accuracy, precision, recall rate, and efficiency.

Table 7: Comprehensive experimental results

Avg_Acc Over_Acc Avg_Prec Avg_F2
Training
Time(ms)

Predicting
Time(ms)

0.788 0.855 0.837 0.859 2388 170

5.3 The comparison with other classification algorithms
We compare the method of constructing the performance fault diagnosis model with the
GBDT algorithm used in this paper and Random Forest (RF), Decision Tree (DT) and
AdaBoost algorithm, respectively. Because RF, AdaBoost, and GBDT are all integrated
algorithms, and the weak learning model used in GBDT is the DT model, so we use these
three algorithms to compare with algorithms used in this paper. Our comparison
experiments are performed under default parameters of each algorithm to obtain the
diagnostic capability and diagnostic efficiency of the performance fault diagnosis model
constructed by each method in default.
The Figs. 9-12 mainly introduces the Avg_Acc,Over_Acc, Avg_Prec, Avg_F2 comparison of
four algorithms. From the comparison Figs. 9-12, we can see that the performance fault
diagnosis model constructed using GBDT is superior to other three algorithms in terms of
Avg_Acc and Over_Acc. It is slightly lower than the RF in terms of Avg_F2, but higher than
other two algorithms. The GBDT is much higher than other three algorithms in Avg_Prec.
Therefore, the diagnostic capability that use the GBDT algorithm to construct the performance
fault model is relatively high compared to other three algorithms.

Figure 9: The Avg_Acc comparison of four algorithms

A Performance Fault Diagnosis Method for SaaS Software 1181

The Figs. 13-14 mainly introduces the train_time, predict_time comparison of four
algorithms. From the comparison Figs. 13, 14, we can see that the time of constructing
the performance fault diagnosis model using GBDT is higher than that of the other three,
and much higher than that of DT. However, the time of that use the constructed
performance fault diagnosis model to diagnose unknown type performance logs is still
relatively low. Moreover, we can see that DT algorithm is the fastest, whether it is to
construct a performance fault diagnosis model or to diagnose an unknown type
performance log. However, in view of the Figs. 9-12, the diagnostic capability of DT is
relatively low. In practical applications, we value the predicting time more than training
time, because the construction of the model is a preparatory work, even if later updating
to the model can also be processed in parallel without delaying the diagnosis of the
system performance status. As long as the predicting time is within our tolerance time,
it can meet SaaS software performance maintenance requirements. Therefore, compared
with other methods, the proposed method is feasible in practical applications.

Figure 10: The Over_Acc comparison of four algorithms

Figure 11: The Avg_Prec comparison of four algorithms

 CMC, vol.62, no.3, pp.1161-1185, 2020 1182

Figure 12: The Avg_F2 comparison of four algorithms

Figure 13: The train_time comparison of four algorithms

Figure 14: The predict_time comparison of four algorithms

Combining the above comparison Figs. 13, 14, we can see that even if GBDT is

A Performance Fault Diagnosis Method for SaaS Software 1183

relatively low for DT in efficiency, but from the perspective of the comprehensive
diagnostic performance of the model, and we can think that choosing a GBDT for the
performance model construction is more reasonable than other algorithms.

6 Conclusion and future work
In this paper, we study the SaaS software performance fault diagnosis method through the
requirement of the SaaS software performance maintenance. First, by analyzing the resource
layer KPI when the SaaS software runs, the performance log features are determined. Based
on the analysis result of the warning log, the performance log fault type is annotated. Then
we deal with the incomplete performance log and the non-equalization problem of the type
by using the mean filling for the same type and the combination of the SMOTE and
undersampling methods. We apply the GBDT machine learning method to the performance
fault diagnosis. Finally, the efficiency and accuracy of the proposed method are verified with
a disaster reduction system deployed on the cloud platform.
We will consider future research work from the following three aspects: Firstly, we will
apply the performance fault diagnosis method to other SaaS software systems. Secondly,
we will verify that whether the tool chain can help the SaaS operators to diagnose the
performance fault better and further adjust the tool chain by collecting feedback from
operators. Thirdly, we will expand the scope of these performance features, which can fully
satisfy the requirement of performance diagnosis for new hardwares, e.g., GPU, SDN,
smart net card, and meet the specific requirement of other emerging applications, e.g.,
graph computing, deep learning.

Acknowledgement: This work is supported in part by the National Science Foundation of
China (61672392, 61373038), and in part by the National Key Research and Development
Program of China (No. 2016YFC1202204).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Bezemer, C. P.; Zaidman, A. (2014): Performance optimization of deployed software-as-
a-service applications. Journal of Systems and Software, vol. 87, no. 1, pp. 87-103.
Chawla, N. V.; Bowyer, K. W.; Hall, L. O.; Kegelmeyer, W. P. (2011): Smote: synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research, vol. 16, no.
1, pp. 321-357.
Ding, R.; Fu, Q.; Lou, J. G.; Lin, Q.; Zhang, D. et al. (2012): Healing online service
systems via mining historical issue repositories. IEEE/ACM International Conference on
Automated Software Engineering, pp. 318-321.
Duan, S.; Babu, S. (2008): Guided problem diagnosis through active learning. IEEE
International Conference on Autonomic Computing, pp. 45-54.
Gashler, M. S.; Smith, M. R.; Morris, R.; Martinez, T. (2016): Missing value
imputation with unsupervised backpropagation. Computational Intelligence, vol. 32, no. 2,

 CMC, vol.62, no.3, pp.1161-1185, 2020 1184

pp. 196-215.
Gill, P.; Jain, N.; Nagappan, N. (2011): Understanding network failures in data centers:
measurement, analysis, and implications. ACM SIGCOMM Computer Communication
Review, vol. 41, no. 4, pp. 350-361.
He, H.; Garcia, E. A. (2008): Learning from imbalanced data. IEEE Transactions on
Knowledge & Data Engineering, vol. 21, no. 9, pp. 1263-1284.
Jin, W.; Liu, T.; Zheng, Q.; Cui, D.; Cai, Y. (2018): Functionality-oriented microser-
vice extraction based on execution trace clustering. IEEE International Conference on Web
Services, pp. 211-218.
Ju, J.; Wang, Y.; Fu, J.; Wu, J.; Lin, Z. (2010): Research on key technology in SaaS.
International Conference on Intelligent Computing and Cognitive Informatics, pp. 384-387.
Lim, M. H.; Lou, J. G.; Zhang, H.; Fu, Q.; Teoh, A. B. J. et al. (2014): Identifying re-
current and unknown performance issues. IEEE International Conference on Data Mining,
pp. 320-329.
Liu, X.; Wu, J.; Zhou, Z. (2006): A cascade-based classification method for class-
imbalanced data. Journal of Nanjing University (Natural Sciences Edition), vol. 42, no. 2,
pp. 148-155.
Malik, H.; Hemmati, H.; Hassan, A. E. (2013): Automatic detection of performance
deviations in the load testing of large scale systems. International Conference on Software
Engineering, pp. 1012-1021.
Mavridis, I.; Karatza, H. (2017): Performance evaluation of cloud-based log file analysis
with apache Hadoop and apache spark. Journal of Systems and Software, vol. 125, no. 3,
pp. 133-151.
Nagaraj, K.; Killian, C.; Neville, J. (2012): Structured comparative analysis of systems
logs to diagnose performance problems. USENIX Conference on Networked Systems Design and
Implementation, pp. 26-39.
Rahman, G.; Islam, Z. (2011): A decision tree-based missing value imputation technique
for data pre-processing. Australasian Data Mining Conference, vol. 121, pp. 41-50.
Schroeder, B.; Gibson, G. (2010): A large-scale study of failures in high-performance
computing systems. IEEE Transactions on Dependable and Secure Computing, vol. 7, no.
4, pp. 337-350.
Syer, M. D.; Jiang, Z. M.; Nagappan, M.; Hassan, A. E.; Nasser, M. et al. (2013):
Leveraging performance counters and execution logs to diagnose memory-related
performance issues. IEEE International Conference on Software Maintenance, pp. 110-119.
Tsai, W.; Bai, X.; Huang, Y. (2014): Software-as-a-service (SaaS): perspectives and
challenges. Science China Information Sciences, vol. 57, no. 5, pp. 1-15.
Wang, T.; Wei, J.; Zhang, W.; Zhong, H.; Huang, T. (2014): Workload-aware anomaly
detection for web applications. Journal of Systems and Software, vol. 89, no. 3, pp. 19-32.
Wang, T.; Zhang, W.; Ye, C.; Wei, J.; Zhong, H. et al. (2016): Fd4c: automatic fault
diagnosis framework for web applications in cloud computing. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 46, no. 1, pp. 61-75.

A Performance Fault Diagnosis Method for SaaS Software 1185

Wen, X.; Zhang, X.; Zhu, Y. (2015): Design of fault detection observer based on hyper
basis function. Tsinghua Science and Technology, vol. 20, no. 2, pp. 200-204.
Wu, L.; Garg, S. K.; Versteeg, S.; Buyya, R. (2014): Sla-based resource provisioning for
hosted software-as-a-service applications in cloud computing environments. IEEE
Transactions on Services Computing, vol. 7, no. 3, pp. 465-485.
Zawoad, S.; Dutta, A. K.; Hasan, R. (2013): Seclaas: secure logging-as-a-service for
cloud forensics. ACM SIGSAC Symposium on Information, Computer and Communications
Security, pp. 219-230.
Zou, D. Q.; Qin, H.; Jin, H. (2016): Uilog: improving log-based fault diagnosis by log
analysis. Journal of Computer Science and Technology, vol. 31, no. 5, pp. 1038-1052.

	1 Introduction
	2 Background & related work
	2.1 The performance fault diagnosis method
	2.2 The performance log data processing method

	3 Methodolody
	3.2 Log analysis and annotation

	Input:
	Output:
	3.3 The performance log preprocessing method

	Input:
	Output:
	3.4 Construction of the performance fault diagnosis model

	4 Experiment setup
	4.1 Log collection
	4.2 Evaluation measures

	5 The experiment process and the result analysis
	5.1 The experiment process
	5.2 The experimental result analysis
	5.3 The comparison with other classification algorithms

	6 Conclusion and future work
	References

