Vol.124, No.1, 2020, pp.151-178, doi:10.32604/cmes.2020.010115
A Rate-Dependent Peridynamic Model for the Dynamic Behavior of Ceramic Materials
  • Bufan Chu1,2, Qiwen Liu1,2, Lisheng Liu1,2,3,*, Xin Lai1,2, Hai Mei1,2
1 Department of Engineering Structure and Mechanics, Wuhan University of Technology, Wuhan, 430070, China
2 Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan, 430070, China
3 State Key Laboratory of Materials Synthesis and Processing, Wuhan, 430070, China
* Corresponding Author: Lisheng Liu. Email: liulish@whut.edu.cn
Received 11 February 2020; Accepted 09 April 2020; Issue published 19 June 2020
In this study, a new bond-based peridynamic model is proposed to describe the dynamic properties of ceramics under impact loading. Ceramic materials show pseudo-plastic behavior under certain compressive loadings with high strain-rate, while the characteristic brittleness of the material dominates when it is subjected to tensile loading. In this model, brittle response under tension, softening plasticity under compression and strain-rate effect of ceramics are considered, which makes it possible to accurately capture the overall dynamic process of ceramics. This enables the investigation of the fracture mechanism for ceramic materials, during ballistic impact, in more detail. Furthermore, a bond-force updating algorithm is introduced to perform the numerical simulation and solve the derived equations. The proposed model is then used to analyze the dynamic response of ceramics tiles under impact loading to assess its validity. The results of damage development in ceramic materials are calculated and compared with the experimental results. The simulation results are consistent with the experiments, which indicates that the proposed rate-dependent peridynamic model has the capability to describe damage propagation in ceramics with good accuracy. Finally, based on a comparison between simulation and experimental results, it can be concluded that the damage results are in better agreement with experimental results than non-ordinary state-based peridynamic method.
Penetration; ceramic; peridynamics; rate-dependency; crack
Cite This Article
Chu, B., Liu, Q., Liu, L., Lai, X., Mei, H. (2020). A Rate-Dependent Peridynamic Model for the Dynamic Behavior of Ceramic Materials. CMES-Computer Modeling in Engineering & Sciences, 124(1), 151–178.