Special Issue "Numerical Methods for Differential and Integral Equations"

Deadline: 30 November 2019 (closed)
Guest Editors
Professor Şuayip Yüzbaşı, Department of Mathematics, Faculty of Science, Akdeniz University, Turkey
Professor Kamel Al-Khaled, Department of Mathematics, Jordan University of Science and Technology, Jordan
Professor Nurcan Baykuş Savaşaneril, Department of Mathematics, Faculty of Science, Dokuz Eylul University, Turkey
Professor Devendra Kumar, Department of Mathematics, University of Rajasthan, India


This special issue will focus on numerical solutions of diferential, integral and integro-differential equations, partial differential equations, fractional differential equations, fractional partial differential equations, stochastic partial differential equations and functional differential equations. The solutions of mentioned equations have a major role in many applied areas of science and engineering, For examle, physics, chemistry, astronomy, biology, mechanics, electronic, economics, potential theory, electrostatics. Since the mentioned equations are usually difficult to solve analytically, numerical methods are required. Therefore, this Special Issue will contribute to new numerical methods for solving the above mentioned equations and thus, many problems in science and engineering will be solved by means of new numerical methods in this special issue. We would like to invite researchers working on this topic to submit their articles to this Special Issue.

• Numerical methods for ordinary differential equations
• Numerical methods for delay differential equations
• Numerical methods for partial differential equations
• Numerical methods for fractional differential equations
• Numerical methods for integral equations
• Numerical methods for integro-differential equations
• Numerical methods for model problems of differential equations
• Numerical methods for fractional PDE
• Numerical methods for Stochastic PDE
• Numerical methods for functional differential equations

Published Papers
  • Analytical and Numerical Investigation for the DMBBM Equation
  • Abstract The nonlinear dispersive modified Benjamin-Bona-Mahony (DMBBM) equation is solved numerically using adaptive moving mesh PDEs (MMPDEs) method. Indeed, the exact solution of the DMBBM equation is obtained by using the extended Jacobian elliptic function expansion method. The current methods give a wider applicability for handling nonlinear wave equations in engineering and mathematical physics. The adaptive moving mesh method is compared with exact solution by numerical examples, where the explicit solutions are known. The numerical results verify the accuracy of the proposed method. More
  •   Views:124       Downloads:121        Download PDF