Special Issue "Data Science and Modeling in Biology, Health, and Medicine"

Deadline: 31 March 2020
Submit to Special Issue
Guest Editors
Prof. Ka-Chun Wong, City University of Hong Kong, Hong Kong SAR
Prof. Xiangtao Li, Northeast Normal University, China
Dr. Frederick Kin Hing Phoa, Academia Sinica, Taiwan

Summary

Since the 2010s, the high-throughput sequencing technologies such as Oxford Nanopore sequencing and other third-generation sequencing facilities have revolutionized the molecular biology research field. Such an advancement has propelled a multitude of downstream studies lead to significant impacts on biology, health, and medicine. However, such kind of new data is big, fast, and heterogeneous. It demands a new set of data science and modeling approaches in terms of computational scalability, complexity, and fault-tolerance. 

Therefore, we have initiated such a special issue on the data science and modeling in biology, health, and medicine in the hope that researchers can gather their works together in a single special issue for broad and deep impacts on multiple disciplines such as mathematical biology, bioinformatics, computational biology, health informatics, biomedical engineering, cancer informatics, translational medicine, and other related fields.


Keywords
Bioinformatics; Computational Biology; Machine Learning; Data Science; Data Mining; Computational Intelligence; Natural Computing; Genetic Algorithm; Differential Evolution; Evolutionary Computation

Published Papers
  • Growing and Pruning Based Deep Neural Networks Modeling for Effective Parkinson’s Disease Diagnosis
  • Abstract Parkinson’s disease is a serious disease that causes death. Recently, a new dataset has been introduced on this disease. The aim of this study is to improve the predictive performance of the model designed for Parkinson’s disease diagnosis. By and large, original DNN models were designed by using specific or random number of neurons and layers. This study analyzed the effects of parameters, i.e., neuron number and activation function on the model performance based on growing and pruning approach. In other words, this study addressed the optimum hidden layer and neuron numbers and ideal activation and optimization functions in order… More
  •   Views:204       Downloads:126        Download PDF