• The Elaboration of Flow Resistance Model for a Bag Filter Serving a 200 MW Power Plant
  • Abstract On the basis of a macro flow resistance method and the Darcy Theory, a mathematical model is elaborated to characterize the flow resistance of a bag filter serving a coal-fired power plant. The development of the theoretical model is supported through acquisition of relevant data obtained by scanning the micro structure of the bag filter by means of an electron microscope. The influence of the running time and boiler load on the flow resistance and the impact of the flow resistance on the efficiency of the induced draft fan are analyzed by comparing the results of on-site operation tests. We… More
  •   Views:44       Downloads:43        Download PDF
  • Analysis of Gas-Solid Flow Characteristics in a Spouted Fluidized Bed Dryer by Means of Computational Particle Fluid Dynamics
  • Abstract In order to grasp the particle flow characteristics and energy consumption of industrial fluidized spouted beds, we conduct numerical simulations on the basis of a Computational Particle Fluid Dynamics (CPFD) approach. In particular, the traction model of Wen-Yu-Ergun is used and different inlet conditions are considered. Using a low-speed fluidizing gas, the flow state of the particles is better and the amount of particles accumulated at the bottom of the bed wall becomes smaller. For the same air intake, the energy loss of a circular nozzle is larger than that of a square nozzle. More
  •   Views:42       Downloads:45        Download PDF
  • Complete Coalescence, Partial Bounce and Rebound: Different Regimes Resulting from the Interaction of a Free Falling Drop with a Target Fluid
  • Abstract The interaction of a falling drop (diluted aqueous solution of ink in various concentrations) with a target fluid (partially degassed tap water) has been tracked by means of high-resolution video recording and photography. The experimental setup has carefully been prepared in order to preserve the axial symmetry of initial conditions. Three regimes of interaction have been identified accordingly (depending on the drop velocity as controlled by the distance of fall): rapid droplet coalescence, rebound with the conservation of the drop volume and shape, and partial coalescence. Previous findings are recovered and confirmed, and enriched with heretofore unseen observations of complex… More
  •   Views:36       Downloads:35        Download PDF
  • Fast Superfine Components and Sound Packets in Phenomena Induced by the Impact of a Drop on a Target Fluid in Quiescent Conditions
  • Abstract The structure of the flow and the acoustic signals generated by the impact of a freely falling drop of water with an underlying quiescent fluid have been investigated for droplets having diameter 0.5 cm and a contact velocity in the range 1.5 < U < 5 m/s. The experimental study has been supported by high-resolution videos of the flow (as seen from above and from the side). The evolution of ejecta, spikes, droplets spray, cavity, splash, secondary cavity, streamer, secondary droplets and sequence of capillary waves is reported accordingly. In particular, perturbations of the smoothed free surface with transverse dimensions… More
  •   Views:35       Downloads:30        Download PDF
  • Oscillations of an Inviscid Encapsulated Drop
  • Abstract The problem relating to the small-amplitude free capillary oscillations of an encapsulated spherical drop is solved theoretically in the framework of asymptotic methods. Liquids are supposed to be inviscid and immiscible. The formulas derived are presented for different parameters of the inner and outer liquids, including densities, thickness of the outer liquid layer, and the surface and interfacial tension coefficients. The frequencies of oscillation of the encapsulated drop are studied in relation to several “modes” which can effectively be determined in experiments by photo and video analysis. The results are presented in terms of oscillation frequencies reported as a function… More
  •   Views:32       Downloads:27        Download PDF
  • A Laboratory Investigation into the Fuel Atomization Process in a Diesel Engine for Different Configurations of the Injector Nozzles and Flow Conditions
  • Abstract This paper reports a laboratory investigation of the fuel injection process in a diesel engine. The atomization process of the considered fuel (a hydrocarbon liquid) and the ensuing mixing with air is studied experimentally under high-pressure conditions. Different types of injector nozzles are examined, including (two) new configurations, which are compared in terms of performances to a standard injector manufactured by the Bosch company. For the two alternate con- figurations, the intake edges of one atomizing hole (hole No. 1) are located in the sack volume while for the other (hole No. 2) they are located on the locking cone… More
  •   Views:30       Downloads:26        Download PDF